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Hyperspectral Image (HSI)

HSIs contain wealthy spatial-spectral knowledge and have been
widely used in many applications, such as material identification,
mineral detection, and forest inspection.
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Why Study HSI Denoising?

Due to the limitation of imaging conditions, HSIs are inevitably
contaminated by various kinds of noise, e.g., Gaussian noise,
impulse noise, stripes, and deadlines, which degrades the HSIs
quality and limits the subsequent applications.
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Conclusive Issue for HSI Denoising

Exploring accurate spatial-spectral prior knowledge of HSIs:

piecewise smoothness;
nonlocal self-similarity;
low-rankness;
· · ·
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Tensor Basics (Fibers and Slices)

A fiber of a tensor X is a vector generated by fixing every index
but one.
A slice of a tensor X is a matrix generated by fixing every index

but two.

(a) (b)

Figure 1: Fibers and slices of three-way tensors.
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T-Product and T-SVD

T-product: F = X ∗ Y ⇔ F(i , j , :) =
∑n2

t=1X (i , t , :) ? Y(t , j , :),
where ? denotes the circular convolution between two tubes.
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Figure 2: The t-SVD for third-order tensor.

[1] M. E. Kilmer and C. D. Martin, Factorization Strategies for Third-order Tensors,

LAA, 2011.
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Tubal Rank and TNN

The tubal rank of X is defined as the number of non-zero tubes
of S, i.e.,

rankt(X ) := #{i : S(i , i , :) 6= 0}.

The tensor nuclear norm (TNN) of X can be computed via the
summation of the matrix nuclear norm of Fourier transformed
frontal slices , i.e.,

‖X‖TNN =
∑n3

i=1

∥∥X̄ (i)∥∥
∗,

where X̄ (i) is the i-th frontal slice of X̄ with X̄ = fft(X , [],3).

[2] Z. M. Zhang et al., Novel Methods for Multilinear Data Completion and De-noising
Based on Tensor-SVD, CVPR, 2014.
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Illustration
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Figure 3: The t-SVD for an HSI.

When setting the band of an HSI to be the frontal slice of a
three-way tensor, the t-SVD characterizes its spatial correlations
via SVDs, while describes its spectral correlation by the embed-
ded circular convolution or DFT.
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Mode-k T-Product

Mode-k t-product (∗k ):

F = X ∗1 Y ⇔ F(:, j , s) =
∑n3

t=1
X (:, j , t) ? Y(:, t , s),

F = X ∗2 Y ⇔ F(i , :, s) =
∑n1

t=1
X (t , :, s) ? Y(i , :, t),

F = X ∗3 Y ⇔ F(i , j , :) =
∑n2

t=1
X (i , t , :) ? Y(t , j , :).

[3] Y.-B. Zheng et al., Mixed Noise Removal in Hyperspectral Image via Low-fibered-

rank Regularization, TGRS, 2020.
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Mode-k T-SVD and Fibered Rank
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Figure 4: The mode-k t-SVD for three-way tensors (k=1,2,3).

The mode-k fibered rank: rankfk (X ) is defined as the number
of non-zero mode-k fibers of Sk .

The fibered rank: rankf(X ) =
(
rankf1(X ), rankf2(X ), rankf3(X )

)
.
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Low-Fibered-Rank Prior for An HSI
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Figure 5: The mode-k t-SVD for an HSI.

Table 1: The rank estimation of an HSI.

Data Size Tucker rank Tubal rank Fibered rank
Washington DC Mall 256× 256× 150 (107,110,6) 182 (8,8,182)
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Convex Relaxation: Three-Directional Tensor Nuclear Norm (3DTNN)

Mode-k TNN: ‖X‖TNNk is defined as the sum of singular values
of all the mode-k slices of X̄k , i.e.,

‖X‖TNNk :=
∑nk

i=1

∥∥(X̄k )
(i)
k

∥∥
∗,

where (X̄k )
(i)
k is the i-th mode-k slice of X̄k with X̄k = fft(X , [], k).

3DTNN: ‖X‖3DTNN is defined as

‖X‖3DTNN :=
∑3

k=1
αk‖X‖TNNk ,

where αk ≥ 0 (k = 1,2,3) and
∑3

k=1 αk = 1.

Yun-Yang Liu (UESTC) FRCTR-PnP (TGRS)
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3DTNN-Based HSI Denoising Model

Considering a target HSI X ∈ Rn1×n2×n3 , the proposed 3DTNN-
based HSI denoising model is formulated as

min
X ,N ,S

‖X‖3DTNN + λ1‖N‖2F + λ2‖S‖1,

s.t. Y = X +N + S,
(1)

where Y is the observed HSI, N is Gaussian noise, and S is
sparse noise.

Yun-Yang Liu (UESTC) FRCTR-PnP (TGRS)



Introduction
The Proposed Model and Algorithm

Numerical Experiments

Motivation

The convex and non-convex surrogates cannot well approxi-
mate the singular values and singular vectors of slices after the
Fourier transform. We directly constrain the tensor fibered
rank (FRCTR) of the solution.

Only considering the low-rankness prior usually faces limi-
tations in preserving local details and removing the noise with
low-rank property, such as stripe noise and deadlines. We intro-
duce an implicit regularizer under the Plug-and-Play (PnP)
framework.

Yun-Yang Liu (UESTC) FRCTR-PnP (TGRS)
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The PnP-based framework for HSI restoration.
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Figure 6: The PnP-based framework for HSI restoration. (a) A noisy
HSI. (b) Illustration of low-fibered-rank prior and nonlocal self-similarity
prior. (c) The restored results of the simulated experiment.
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FRCTR-PnP model for HSI denoising

We suggest a novel HSI restoration model by introducing a
FRCTR with an embedded PnP-based regularization (FRCTR-
PnP) as

min
X ,S
‖S‖1 + λΦ(X )

s.t. ‖Y − X − S‖2F ≤ ε, rankf(X ) ≤ [r1, r2, r3],
(2)

where Y denotes the observed HSI, S denotes sparse noise,
[r1, r2, r3] is the upper bound of the fibered rank of X , and Φ(X )
is an implicit regularizer exploiting certain priors of the HSI.

Yun-Yang Liu (UESTC) FRCTR-PnP (TGRS)
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ADMM-Based Algorithm

We develop an ADMM-based algorithm to solve (2). By in-
troducing auxiliary variables Fk (k = 1,2,3) and L, (2) can be
rewritten as

min
X ,S,Fk

‖S‖1 + λΦ(L)

s.t. ‖Y − X − S‖2F ≤ ε,X = L,
X = Fk , rankfk (Fk ) ≤ rk (k = 1, 2, 3),

(3)

Yun-Yang Liu (UESTC) FRCTR-PnP (TGRS)
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The augmented Lagrangian function of (3) is

Lβk (X ,Fk ,L,S,Pk ) =
3∑

k=1

{〈X − Fk ,Pk 〉+
βk

2
‖X − Fk‖2F}

+ ‖S‖1 + 〈Y − X − S,P4〉+
β4

2
‖Y − X − S‖2F

+ λΦ(L) + 〈X − L,P5〉+
β5

2
‖X − L‖2F

s.t. rankfk (Fk ) ≤ rk (k = 1, 2, 3),

Yun-Yang Liu (UESTC) FRCTR-PnP (TGRS)
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ADMM-Based Algorithm

Algorithm 1 ADMM-based optimization algorithm for solving FRCTR-PnP.
Input: The noisy HSIY , parameter λ, fibered rank [r1, r2, r3], oversampling parameter [p1, p2, p3], stopping criteria
ε, and acceleration parameter δ.

Initialization: t = 0, let X 0, S0, L0 F0
k , (k = 1, 2, 3) and Lagrangian multiplies P0

k (k = 1, 2, · · · , 5) be zeros
tensors, and parameter βk (k = 1, 2, · · · , 5).

while not converged do

Update F t+1
k = 3DRT-SVD(X t + P t

k/βk , [r1, r2, r3], [p1, p2, p3]), k = 1, 2, 3.

Update Lt+1 = BM3D(X t + P t
5/β5, σ).

Update S t+1 = soft(Y − X t + P t
4/β4, 1/β4).

UpdateX t+1 =
{∑3

k=1 βk (F t+1
k −P t

k/βk )+β4(Y−S t +P4/β4)+β5(Lt+1−P t
5/β5)

}
/
∑5

k=1 βk .

Update P t+1
k = P t

k + βk (X − F t+1
k ), k = 1, 2, 3.

Update P t+1
4 = P t

4 + β4(Y − X t+1 − S t+1).

Update P t+1
5 = P t

5 + β5(X t+1 − Lt+1).

Let βk = min(δβk, βmax); t = t + 1.

Check the convergence condition ‖X t+1 − X t‖F/‖X t‖F < ε.

end while

Output: The restored HSI X .

Yun-Yang Liu (UESTC) FRCTR-PnP (TGRS)
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Computational Cost

Computational cost:

O(n1n2n3log(n1n2n3) + n1n2n3

3∑
i=1

(ri + pi) + n1n2n3).

Yun-Yang Liu (UESTC) FRCTR-PnP (TGRS)
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Compared Methods

Compared Methods:

wavelet-based method FORPDN [Rasti et al., IEEE JSTARS
2014];

subspace-based method SNLRSF [Cao et al., IEEE JS-
TARS 2019];

T-SVD-based method SSTV-LRTF [Fan et al., IEEE TGRS
2018];

Tucker decomposition-based method LRTDTV [Wang et al.,
IEEE JSTARS 2018];

mode-k T-SVD based method 3DTNN and 3DLogTNN [Zheng
et al., IEEE TGRS 2020].

Yun-Yang Liu (UESTC) FRCTR-PnP (TGRS)
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Simulated Experiments

Five types of noise:

Gaussian Noise;

Gaussian Noise + Salt and Pepper Noise;

Gaussian Noise + Salt and Pepper Noise+ Stripe Noise;

Gaussian Noise + Salt and Pepper Noise+ Deadlines;

Gaussian Noise + Salt and Pepper Noise+ Stripe Noise+
deadlines.

Yun-Yang Liu (UESTC) FRCTR-PnP (TGRS)
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Simulated Experiments

Table 2: The Quantitative Comparison of Different Methods on the dataset Washing-
ton DC Mall.

Case Indicators Noise FORPDN SNLRSF
SSTV-

LRTDTV 3DTNN
3DLog FRCTR

LRTF -TNN -PnP

Case 1

MPSNR 20.001 34.057 40.029 35.505 36.720 35.832 37.532 38.168

MSSIM 0.4018 0.9302 0.9812 0.9499 0.9550 0.9646 0.9688 0.9738

SAM 30.695 6.8732 2.5679 4.8184 4.5197 3.8600 3.5857 3.1812

Case 2

MPSNR 10.823 22.231 33.351 33.717 34.934 33.195 35.613 36.021

MSSIM 0.1024 0.7309 0.9021 0.9280 0.9353 0.9359 0.9557 0.9592

SAM 49.176 12.342 8.1513 5.8205 6.4623 5.4231 4.1690 3.8865

Case 3

MPSNR 10.161 21.841 30.181 29.527 30.620 26.052 28.086 32.207

MSSIM 0.0873 0.7110 0.8358 0.8404 0.8639 0.7798 0.8204 0.9121

SAM 51.121 14.008 11.624 7.8388 7.4715 12.797 10.823 7.3728

Case 4

MPSNR 10.211 22.079 30.379 30.712 31.551 27.430 29.597 33.374

MSSIM 0.0876 0.7141 0.8370 0.8759 0.8823 0.8310 0.8884 0.9336

SAM 51.364 13.446 10.413 7.5820 7.7430 9.5372 7.2102 5.8634

Case 5

MPSNR 10.181 21.929 30.371 28.569 29.428 24.099 26.531 32.258

MSSIM 0.0870 0.7115 0.8342 0.8135 0.8214 0.6720 0.7573 0.9177

SAM 51.252 13.705 11.503 11.183 8.3036 13.535 11.699 7.2065

Yun-Yang Liu (UESTC) FRCTR-PnP (TGRS)
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Clean image Noisy image FORPDN SNLRSF SSTV-LRTF

LRTDTV 3DTNN 3DLogTNN FRCTR-PnP

Figure 7: The restored results of band 96 on WDC Mall by different
methods for case 2.
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Clean image Noisy image FORPDN SNLRSF SSTV-LRTF

LRTDTV 3DTNN 3DLogTNN FRCTR-PnP

Figure 8: The restored results of band 96 on WDC Mall by different
methods for case 5.
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Thank you very much for listening!
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