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Abstract— Hyperspectral images (HSIs) are often contami-
nated by several types of noise, which significantly limits the
accuracy of subsequent applications. Recently, low-rank modeling
based on tensor singular value decomposition (T-SVD) has
achieved great success in HSI restoration. Most of them use
the convex and nonconvex surrogates of the tensor rank, which
cannot well approximate the tensor singular values and obtain
suboptimal restored results. We suggest a novel HSI restoration
model by introducing a fibered rank constrained tensor restora-
tion framework with an embedded plug-and-play (PnP)-based
regularization (FRCTR-PnP). More precisely, instead of using
the convex and nonconvex surrogates to approximate the fibered
rank, the proposed model directly constrains the tensor fibered
rank of the solution, leading to a better approximation to the
original image. Since exploiting the low-fibered-rankness of HSI
is mainly to capture the global structure, we further employ an
implicit PnP-based regularization to preserve the image details.
Particularly, the above two building blocks are complementary
to each other, rather than isolated and uncorrelated. Based on
the alternating direction multiplier method (ADMM), we pro-
pose an efficient algorithm to tackle the proposed model. For
robustness, we develop a three-directional randomized T-SVD
(3DRT-SVD), which preserves the intrinsic structure of the clean
HSI and removes partial noise by projecting the HSI onto a low-
dimensional essential subspace. Extensive experimental results
including simulated and real data demonstrate that the proposed
method achieves superior performance over compared methods
in terms of quantitative evaluation and visual inspection.

Index Terms— Hyperspectral image (HSI) restoration, low-
fibered-rank, plug and play, three-directional randomized tensor
singular value decomposition (3DRT-SVD).
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I. INTRODUCTION

W ITH the great progress of hyperspectral imaging sen-
sors, hyperspectral images (HSIs) provide abundant

spectral information and play an important role in classifica-
tion [1]–[4], segmentation [5], and unmixing [6]–[11]. Due to
hardware limitations and poor conditions, HSIs are inevitably
contaminated by various kinds of noise, e.g., Gaussian noise,
impulse noise, and deadlines, which degrade the HSI qual-
ity and limits the subsequent applications. Therefore, it is
important to conduct HSI restoration, which aims to restore an
underlying HSI from its corrupted version. For this purpose,
a key is to depict the spatial and spectral features of HSI, e.g.,
the strong correlations among spatial pixels and spectral bands
[12]–[32], see Fig. 1.

By exploring the spatial and spectral features of HSI,
many restoration methods for specific noise were proposed.
Since each band of an HSI can be viewed as a gray image,
a direct method is to restore the HSI band-by-band by applying
gray image restoration techniques, such as dictionary learning
[33], nonlocal means filter [34], and weighted nuclear norm
minimization [35]. These methods do not take the correlations
among the spectral bands into consideration and thus usually
provide unsatisfactory results. Subsequently, many restoration
methods consider similar 3-D cubes as a basic unit to exploit
nonlocal self-similarity (NSS) in both spatial and spectral
domains, such as BM4D [36] and nonlocal tensor dictionary
learning [37]. Besides, many works exploit the piecewise
smoothness along spatial and spectral dimensions simultane-
ously, including spectral–spatial adaptive hyperspectral total
variation (SSAHTV) [38], anisotropic spectral–spatial total
variation (ASSTV) [39], and spatio-spectral total variation
(SSTV) [40]. Low-rank modeling has been widely used in the
HSI restoration. A representation is Tucker3 decomposition-
based methods [41]–[44], which conducts both spatial low-
rank approximation and spectral dimensionality reduction to
HSIs. Subsequently, Parallel Factor Analysis was applied to
HSI restoration in [45]. And then, several different types of
regularizations [46]–[48] were considered based on [45] to
achieve better restored results. To reduce the computational
complexity, low-rank subspace representation is introduced
for HSI restoration [49], [50]. The above methods limit the
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Fig. 1. PnP-based framework for HSI restoration. (a) Noisy HSI. (b) Illustration of low-fibered-rank prior and NSS prior. (c) Restored results of the simulated
experiment.

kinds of noise, i.e., Gaussian noise. However, in real-world
scenarios, the acquired HSIs are usually corrupted by several
kinds of noise.

Recently, extensive works have been proposed on HSI
restoration [51]–[57] for the mixed noise case. Exploiting
the low-rankness of the clean HSI and the sparsity property
of the non-Gaussian noise (including salt and pepper noise,
stripe noise, and deadlines), the low-rank matrix recovery
framework [51] was proposed to exploit the low-rank property
of the unfolding matrix of HSI along the spectral mode.
Peng et al. [52] suggested a mixed weighted nuclear norm and
l1 norm for enhancing low-rankness and sparsity, respectively.
Considering piecewise smoothness, He et al. [54] proposed
total variation (TV)-regularized low-rank matrix factorization,
which used the matrix nuclear norm and TV regularization to
characterize the spectral low-rankness and the spatial piece-
wise smooth structure, respectively. However, unfolding the
HSI into a matrix destroys the spatial structure and leads to
distortion of some bands in the restored results.

To preserve the global structure, tensor-based techniques
have been proposed to characterize the tensorial structure
of the HSI, which are motivated by different tensor decom-
position schemes. Tucker decomposition considers the low-
rankness of unfolding matrices along all three dimensions.
Bai et al. [58] utilized the NSS to group similar cubes
to third-order noisy tensors, and then used the nonnegative
Tucker decomposition to solve the task of image restoration.
In [59], the low-Tucker-rank model and SSTV regularizer
were combined (LRTDTV) to exploit the global spatial-
and-spectral correlation and enhance the spatial information,
respectively. Chen et al. [60] took both Tucker decomposition
and a weighted group sparsity term into consideration, which
improved the restoration results compared with the previous
TV methods. Zhang et al. [61] combined nonlocal low-rank
Tucker decomposition and TV regularization, which exploited
high correlation across the spectral bands and captured the
NSS, respectively. But the unbalanced matricization scheme of

the Tucker format causes difficulty in characterizing the global
correlation [62]. Based on tensor singular value decomposition
(T-SVD) [63], Fan et al. [64] incorporated SSTV regulariza-
tion into a low-rank tensor factorization framework (SSTV-
LRTF), which used tensor nuclear norm (TNN) to present
the low-rank property of HSIs and SSTV regularization to
exploit the piecewise smoothness among spatial and spectral
domains. The T-SVD framework lacks flexibility in describ-
ing different correlations of all modes of HSIs, resulting in
suboptimal restoration performance. Therefore, Zheng et al.
[65] generalized T-SVD to the mode-k T-SVD, proposed the
fibered rank, and introduced a convex surrogate (3DTNN) and
nonconvex surrogate (3DLogTNN) to approximate the tensor
fibered rank. However, the convex and nonconvex surrogates
cannot well approximate the singular values and singular
vectors of slices after the Fourier transform. Fig. 2 shows
the comparison between a clean HSI and the restored results
obtained by 3DTNN and 3DLogTNN on singular values and
singular vectors, based on the first slice after the Fourier
transform along the second mode. We clearly observe that the
singular values and singular vectors obtained by 3DTNN and
3DLogTNN do not approximate well to those of the original
ones.

To tackle the HSI restoration problem, we introduce a
fibered rank constrained tensor restoration framework with an
embedded Plug-and-Play (PnP)-based regularization (FRCTR-
PnP). The fibered rank mainly helps to characterize the global
structure, and the PnP-based regularization helps to preserve
fine details and achieves better-restored results. These two
building blocks are complementary to each other, rather than
isolated and uncorrelated. More specifically, the contributions
of this article are threefold.

First, instead of using a convex surrogate or nonconvex
surrogate to approximate the fibered rank, we directly con-
strain the tensor fibered rank of the solution, which achieves a
better approximation to the clean HSI in terms of fibered rank,
leading tensor singular values, and the corresponding singular
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Fig. 2. Comparison among restored results obtained by 3DTNN, 3DLogTNN,
and FRCTR on the approximation of singular values and singular vectors.
(a) Logarithm of the first twenty singular values of the first slice after the
Fourier transform. (b) Three left singular vectors of the first slice after the
Fourier transform.

vectors. Fig. 2 illustrates that the fibered rank, singular values,
and singular vectors of FRCTR are closer to those of the clean
HSI than 3DTNN and 3DLogTNN.

Second, only considering the low-rankness prior usually
faces limitations in preserving local details and removing
the noise with low-rank property, such as stripe noise and
deadlines. Therefore, we introduce an implicit regularizer
under the PnP framework [66] to break through the limitations,
which is flexible to embed a large number of general denoisers
(e.g., classic BM3D denoiser [67] and advanced deep-learning
denoisers [68]–[74]). This article employs the classic BM3D
denoiser as an example, which exploits the NSS prior. The
motivation is that the plugged BM3D denoiser can preserve
the image details conveyed by dropping small tensor singular
values due to low-fibered-rankness promotion.

Third, to efficiently tackle the proposed FRCTR-PnP model,
we develop an algorithm based on alternating direction mul-
tiplier method (ADMM) to decompose the original problem
into several simple subproblems [66]. Besides, we design a
three-directional randomized T-SVD (3DRT-SVD) to tackle
the low-fibered-rank subproblem. The 3DRT-SVD can retain
the intrinsic information of the clean HSI while removing
partial noise by projecting the HSI onto a low-dimensional
essential subspace. Extensive experiments on simulated and
real data demonstrate that the proposed method yields superior
performance over the compared methods in HSI restoration.

The remainder of this article is organized as follows.
Section II gives the necessary preliminaries to facilitate our
presentation. Section III introduces the proposed FRCTR-PnP
model and the ADMM-based solving algorithm. Section IV
presents experimental results and discussion. Section V con-
cludes this article.

II. NOTATION AND PRELIMINARIES

In this section, we summarize the minimal and necessary
notations in Table I. Next, we introduce some definitions for
subsequent discussion.

TABLE I

NOTATIONS

Definition 1 (t-Product [63]): The t-product between X ∈
R

n1×n2×n3 and Y ∈ R
n2×n4×n3 , denoted as X ∗ Y , is a tensor

Z of size n1 × n4 × n3 with tubes

Z(m, n, :) =
n2�

t=1

X (m, t, :) � Y(t, n, :) (1)

where “�” denotes circular convolution [75] of two tubes.
Definition 2 (Conjugate Transpose [63]): The conjugate

transpose of X ∈ R
n1×n2×n3 , denoted as X H , is constructed

by conjugate transposing each frontal slice of X and then
reversing the order of transposed frontal slices 2 through n3.

Definition 3 (T-SVD [76]): Let X ∈ R
n1×n2×n3 be a third-

order tensor, then X can be factorized as

X = U ∗ D ∗ VH (2)

where U ∈ R
n1×n1×n3 and V ∈ R

n2×n2×n3 satisfy U ∗ UH =
V ∗ VH = I, and U(:, j, k) and V(:, j, k) are called the left
singular vectors and right singular vectors of X , respectively.
D ∈ R

n1×n2×n3 is an f-diagonal tensor where each of its frontal
slices is diagonal, and the entries in D are called the tensor
singular values of X .

Definition 4 (Tensor Tubal Rank [76]): The tubal rank of
X ∈ R

n1×n2×n3 , denoted as rankt(X ), is the number of nonzero
tubes of D from the decomposition X = U ∗ D ∗ VH , that is

rankt(X ) = #{i : D(i, i, :) �= 0} = max
k

rank(X̄k) (3)

where X̄ is computed by taking the Fast Fourier Trans-
form (FFT) along the third mode of X , and X̄ k is the kth
frontal slide of X̄ .

Definition 5 (Tensor Mode-k Permutation [65]): The mode-
k permutation of X ∈ R

n1×n2×n3 , denoted as X k̄ or
permute(X , k), satisfies that Xi, j,k = X 1̄

j,k,i = X 2̄
k,i, j = X 3̄

i, j,k .
We define the inverse operator as ipermute(X , k), such that
X = ipermute(permute(X , k), k).

The tensor tubal rank lacks flexibility when dealing with the
different relationships of all modes of HSIs, which leads to
inadequate characterization for the spectral mode. Therefore,
Zheng et al. [65] extended mode-3 operations to mode-k
operations, such as mode-k conjugate transpose, mode-k t-
product, and mode-k T-SVD.
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Definition 6: The mode-1, mode-2, and mode-3 t-product
[65] are defined as follows:

The mode-1 t-product between X ∈ R
n1×n2×n3 and Y ∈

R
n1×n3×n4 , denoted as X ∗1Y , is a tensor Z of size n1×n2 ×n4

with tubes

Z(:, j, k) =
n3�

t=1

X (:, j, t) � Y(:, t, k). (4)

The mode-2 t-product between X ∈ R
n1×n2×n3 and Y ∈

R
n4×n2×n1 , denoted as X ∗2Y , is a tensor Z of size n4×n2 ×n3

with tubes

Z(i, :, k) =
n1�

t=1

X (t, :, k) � Y(i, :, t). (5)

The mode-3 t-product between X ∈ R
n1×n2×n3 and Y ∈

R
n2×n4×n3 , denoted as X ∗3Y , is a tensor Z of size n1×n4 ×n3

with tubes

Z(i, j, :) =
n2�

t=1

X (i, t, :) � Y(t, j, :). (6)

Based on mode-k t-product, we have the mode-k T-SVD.
Definition 7 (Mode-k T-SVD [65]): Let X ∈ R

n1×n2×n3 be
a third-order tensor, then it can be factorized as

X = Uk ∗k Dk ∗k VHk
k (7)

where U k̄
k and V k̄

k satisfy U k̄
k ∗ (U k̄

k )H = V k̄
k ∗ (V k̄

k )H = I, Dk̄
k

is a f-diagonal tensor.
Definition 8 (Mode-k Tensor Fibered Rank and Tensor

Fibered Rank [65]): The mode-k fibered rank of X ∈
R

n1×n2×n3 , denoted as rankfk (X ), is defined as the number
of nonzero mode-k fibers of Dk . Then, the fibered rank of
X , denoted as rankf(X ), is defined as a vector, and its kth
element is the mode-k tensor fibered rank.

Theorem 1: For X ∈ R
n1×n2×n3 , its tensor fibered rank and

tensor tubal rank have the following relationship:
rankfk (X ) = rankt(X k̄). (8)

III. PNP-REGULARIZED FIBERED RANK-CONSTRAINED

TENSOR RESTORATION

Assuming that the noise is independent additive noise,
we consider the following degradation model in our work:

Y = X + N + S (9)

where the tensors Y , X , N , and S denote the corrupted
HSI, the clean HSI, the Gaussian noise, and the sparse noise
(including salt and peppers, stripes, and deadlines).

Based on this degradation model, we propose an FRCTR-
PnP to restore the global structural information of the clean
HSI by the tensor fibered rank constraint and preserve the fine
details by the PnP-based regularization. Following the above
discussions, we formulate the FRCTR-PnP model as:

min
X ,S

�S�1 + λ�(X )

s.t. �Y − X − S�2
F ≤ �, rankf(X ) ≤ [r1, r2, r3] (10)

where λ is a tuning parameter and [r1, r2, r3] is the upper
bound of the fibered rank of X . �(X ) is an implicit regularizer
exploiting certain priors of the HSI, which can be chosen from
a large number of denoisers (e.g., BM3D denoiser [67] and
deep-learning denoisers [68]–[74]). By introducing auxiliary
variables Fk (k = 1, 2, 3) and L, (10) can be rewritten as

min
X ,S,Fk

�S�1 + λ�(L)

s.t. �Y − X − S�2
F ≤ �, X = L

X = Fk, rankfk (Fk) ≤ rk (k = 1, 2, 3) (11)

where rankfk (X ) denotes the mode-k tensor fibered rank of X .
We design an ADMM-based algorithm under PnP framework
[77] by introducing the Lagrangian multipliers. We have the
augmented Lagrangian function of (11) as

Lβk (X ,Fk,L,S,Pk)

=
3�

k=1

�
�X − Fk,Pk� + βk

2
�X − Fk�2

F

�
+ �S�1

+ �Y − X − S,P4� + β4

2
�Y − X − S�2

F

+ λ�(L) + �X − L,P5� + β5

2
�X − L�2

F

s.t. rankfk (Fk) ≤ rk (k = 1, 2, 3) (12)

where Pk (k = 1, . . . , 5) are Lagrangian multipliers, and
βk (k = 1, . . . , 5) are penalty parameters. Within the frame-
work of ADMM, X , Fk , L, and S can be divided into two
groups.

The first group is�F t+1
k ,Lt+1,S t+1

� = argmin
Fk,L,S

Lβk

�X t ,Fk,L,S,P t
k

�
. (13)

These variables are decoupled from each other, so they can be
solved separately⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F t+1
k = argmin

rankfk (Fk)≤rk

Lβk

�X t ,Fk,Lt ,S t ,P t
k

�

Lt+1 = argmin
L

Lβk

�X t ,F t+1
k ,L,S t ,P t

k

�
S t+1 = argmin

S
Lβk

�X t ,F t+1
k ,Lt+1,S,P t

k

�
.

(14)

The second group is

X t+1 = argmin
X

Lβk

�X ,F t+1
k ,Lt+1,S t+1,P t

k

�
. (15)

Specifically, the variables are alternately updated as follows:
1) Update Fk (k = 1, 2, 3)

F t+1
k = argmin

rankfk (Fk)≤rk

βk

2

����X t − Fk + P t
k

βk

����
2

F

. (16)

Invoking Theorem 1 in [65]

Z = X ∗k Y ⇔ Z k̄ = X k̄ ∗ Y k̄ . (17)

We use the mode-k permutation operator to conveniently
calculate the mode-k t-product and mode-k T-SVD. Let F̂ =
X t +P t

k/βk , the objective is to find low fibered rank tensors Fk

(rankfk (Fk) ≤ rk, k = 1, 2, 3) while the residual tensors �Fk−
F̂�2

F are minimized. The best “mode-k tensor fibered rank”
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Algorithm 1 3DTT-SVD

Input: F̂ ∈ R
n1×n2×n3 , target fibered rank [r1, r2, r3].

1: F̂1 = permute(F̂ , 1) ∈ R
n2×n3×n1 , F̂2 =

permute(F̂ , 2) ∈ R
n3×n1×n2 , and F̂3 = permute(F̂ , 3) ∈

R
n1×n2×n3 ;

2: Compute T-SVD of F̂1, F̂2, F̂3, truncate them with target
rank r1, r2, r3, and obtain U r1

1 , Sr1
1 , Vr1

1 , U r2
2 , Sr2

2 , Vr2
2 , U r3

3 ,
Sr3

3 , Vr3
3 ;

3: F1 = U r1
1 ∗ Sr1

1 ∗ Vr1
1

H , F2 = U r2
2 ∗ Sr2

2 ∗ Vr2
2

H , and F3 =
U r3

3 ∗ Sr3
3 ∗ Vr3

3
H ;

4: F1 = ipermute(F1, 1), F2 = ipermute(F2, 2), and
F3 = ipermute(F3, 3).
Output: F1, F2, F3.

Algorithm 2 3DRT-SVD

Input: F̂ ∈ R
n1×n2×n3 , target fibered rank [r1, r2, r3], and

oversampling parameter [p1, p2, p3].
1: Compute F̂1 = permute(F̂ , 1), F̂2 = permute(F̂ , 2),
and F̂3 = permute(F̂ , 3);
2: Generate Gaussian random tensors G1 ∈ R

n3×(r1+p1)×n1 ,
G2 ∈ R

n1×(r2+p2)×n2 , and G3 ∈ R
n2×(r3+p3)×n3 ;

3: Compute Z1 = F̂1 ∗G1, Z2 = F̂2 ∗G2, and Z3 = F̂3 ∗G3;
4: Compute Q1 ∈ R

n2×(r1+p1)×n1 , Q2 ∈ R
n3×(r2+p2)×n2 , and

Q3 ∈ R
n1×(r3+p3)×n3 by using t-QR factorization of Z1, Z2,

Z3;
5: Compute C1 = QT

1 ∗F̂1, C2 = QT
2 ∗F̂2, and C3 = QT

3 ∗F̂3;
6: Compute Bk as the rk truncation T-SVD of Ck , where
k = 1, 2, 3;
7: F̂1 = Q1 ∗ B1, F̂2 = Q2 ∗ B2, F̂3 = Q3 ∗ B3;
8: F1 = ipermute(F̂1,1), F2 = ipermute(F̂2,2), and
F3 = ipermute(F̂3,3).
Output: F1, F2, F3.

approximation has an explicit solution obtained by truncated
T-SVD. The specific algorithm is described in Algorithm 1.

Computing the T-SVD in step 2 of Algorithm 1 needs to
compute the SVDs in the Fourier domain, which is extremely
time-consuming. To solve this issue, we introduce the follow-
ing lemma.

Lemma 1: For F̂ ∈ R
n1×n2×n3 , the outputs F1, F2, and F3

of Algorithm 1 have the following relationships:
⎧⎪⎨
⎪⎩
F1 = U r1

1 ∗ U r1
1

H ∗ F̂1

F2 = U r2
2 ∗ U r2

2
H ∗ F̂2

F3 = U r3
3 ∗ U r3

3
H ∗ F̂3.

(18)

Here, the lemma shows that F1, F2, and F3 can be regarded
as the projection of F̂1, F̂2, and F̂3 on the image subspace
along the first, second, and third mode, respectively, which
motivates us to design a random projection algorithm (3DRT-
SVD) to replace three-directional truncated T-SVD (3DTT-
SVD). By projecting the HSI to a low-dimensional essential
subspace, the proposed 3DRT-SVD preserves the intrinsic
information of the clean HSI and removes partial noise.
Meanwhile, 3DRT-SVD reduces the time cost since the size

of the subspace is much smaller than that of the original data.
The details of 3DRT-SVD are shown in Algorithm 2.

We compare the complexity of Algorithms 1 and 2. The
main computation burden of the two algorithms comes from
T-SVD. By introducing the random projection method, the
computation complexity of calculating SVDs is reduced from
O(n1n2n3

�3
i=1 min(ni , ni+1)), n4 = n1 for 3DTT-SVD to

O(
�3

i=1 ni ni−1(ri + pi)
2), n0 = n3 for 3DRT-SVD. Since

the rank of spectral bands is small, e.g., r1 + p1 
 n1,
r2 + p2 
 n2, the compression of first and second modes
is significant.

According to the discussion above, we use the 3DRT-SVD
algorithm to compute the following closed-form solution of
Fk-subproblems:
F t+1

k = 3DRT-SVD



X t + P t

k

βk
, [r1, r2, r3], [p1, p2, p3]

�
.

(19)

The computational complexity of updating F t+1
k (k = 1, 2, 3)

is O(n1n2n3log(n1n2n3) + n1n2n3
�3

i=1(ri + pi)).
2) Update L

Lt+1 = argmin
L

λ�(L) + β5

2

����X t − L + P t
5

β5

����
2

F

. (20)

Letting σ = (λ/β5)
1/2, (20) can be rewritten as

prox�(Lt+1) = argmin
L

�(L) + 1

2σ 2

����X t − L + P t
5

β5

����
2

F

. (21)

Based on the PnP framework, the proximal operator of regu-
larization prox� : R

n1×n2×n3 → R
n1×n2×n3 is replaced by the

state-of-the-art denoiser, which reconstructs the clean image
from the noisy image. Here, the denoiser acts as an implicit
regularizer to express HSIs priors, e.g., piecewise smoothness
and NSS.

BM3D is a denoiser achieving an enhanced sparse repre-
sentation of natural images by performing a 3-D transform-
domain collaborative filtering on groups of similar patches.
More specifically, in BM3D, similar patches are stacked into
3-D groups by block matching, and the 3-D groups are trans-
formed into the transform domain. Then, hard thresholding or
Wiener filtering with coefficients is employed in the transform
domain. Finally, after an inverse transform of coefficients,
all estimated patches are aggregated to reconstruct the whole
image. BM3D can achieve promising denoising performance
by exploiting simultaneously the sparsity and the NSS of
natural images. It also has shown good generalization ability
and efficient implementation, thus we choose BM3D as the
example denoiser in our FRCTR-PnP framework. The solution
is given by

Lt+1 = BM3D



X t + P t

5

β5
, σ

�
(22)

where σ is a parameter related to the noise level. The compu-
tational complexity of updating Lt+1 is O(n1n2n3) [67] when
the preset parameters in BM3D are fixed.

3) Update S

S t+1 = argmin
S

�S�1 + β4

2

����Y − X t − S + P t
4

β4

����
2

F

(23)
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Algorithm 3 ADMM-Based Algorithm for Solving FRCTR-
PnP

Input: The noisy HSI Y , parameter λ, fibered rank
[r1, r2, r3], oversampling parameter [p1, p2, p3], stopping
criteria �, and acceleration parameter δ.
Initialization: t = 0, let X 0, S0, L0 F0

k , (k = 1, 2, 3) and
Lagrangian multiplies P0

k (k = 1, 2, . . . , 5) be zeros tensors,
parameter βk (k = 1, 2, . . . , 5), and βmax = 1010;
1: Update F t+1

k via (19);
2: Update Lt+1 via (22);
3: Update S t+1 via (24);
4: Update X t+1 via (27);
5: Update the multiplies via (28);
6: βk = min(δβk, βmax);

7: Check convergence criteria:
�X t+1 − X t�F

�X t�F
≤ �;

8: If the convergence criteria is not meet, set t := t + 1 and
go to Step 1.
Output: The restored HSI X .

which has the following closed solution:

S t+1 = soft



Y − X t + P t

4

β4
,

1

β4

�
(24)

where

soft(X , γ ) =

⎧⎪⎨
⎪⎩

xi, j,k − γ, if xi, j,k > γ

xi, j,k + γ, if xi, j,k < −γ

0, otherwise.

(25)

The computational complexity of updating S t+1 is O(n1n2n3).
4) Update X

X t+1 =
3�

k=1

βk

2

����X − F t+1
k + P t

k

βk

����
2

F

+ β4

2

����Y − X − S t+1 + P t
4

β4

����
2

F

+ β5

2

����X − Lt+1 + P t
5

β5

����
2

F

. (26)

This is a least squares problem whose solution can be exactly
calculated as

X t+1 =
3�

k=1

βk



F t+1

k − P t
k

βk

�� 5�
k=1

βk + β4



Y − S t + P4

β4

�

� 5�
k=1

βk + β5



Lt+1 − P t

5

β5

�� 5�
k=1

βk . (27)

The computational complexity of updating X t+1 is O(n1n2n3).
5) Update Multipliers: The Lagrangian multipliers are

updated as follows:⎧⎪⎨
⎪⎩
P t+1

k = P t
k + βk

�X t+1 − F t+1
k

�
, k = 1, 2, 3

P t+1
4 = P t

4 + β4(Y − X t+1 − S t+1)

P t+1
5 = P t

5 + β5(X t+1 − Lt+1).

(28)

The computational complexity of updating multipliers is
O(n1n2n3).

Algorithm 3 summarizes the ADMM algorithm to solve
the proposed FRCTR-PnP model (10). The computational
complexity at each iteration of the proposed algorithm is
O(n1n2n3log(n1n2n3)+n1n2n3

�3
i=1(ri + pi)). In the FRCTR-

PnP solver, the inputs include noisy image Y , the fibered rank
[r1, r2, r3], oversampling parameter [p1, p2, p3], and the stop-
ping tolerance �. The penalty parameters βk (k = 1, . . . , 5)
are updated as min(δβk, βmax) (k = 1, . . . , 5) in each iteration.
This strategy has been widely used in ADMM-based algorithm
to accelerate convergence.

IV. EXPERIMENTAL RESULT AND DISCUSSION

We conduct experiments on both simulated and real
HSI data sets to demonstrate the effectiveness of the
proposed FRCTR-PnP. To adequately evaluate the restoration
performance of FRCTR-PnP, we consider the following
six HSI restoration methods for comparison: wavelet-
based method FORPDN [78], subspace-based method
SNLRSF [79], T-SVD-based method SSTV-LRTF [64], Tucker
decomposition-based method LRTDTV [59], and mode-k
T-SVD-based method 3DTNN and 3DLogTNN [65].

In all experiments, each band of the HSI is normalized
into [0, 1], and parameters in compared methods are manually
adjusted to the optimal performance.

A. Simulated Experiments

We use a 256 × 256 × 191 subimage of Washington dc
Mall (WDC Mall) data set1 and a 200 × 200 × 80 subimage
of Pavia City Center data set2 in simulated experiments. The
mean of peak signal-to-noise ratio (MPSNR) over all bands,
the mean of structural similarity (MSSIM) over all bands, and
the spectral angle mapping (SAM) [65] are adopted to give
a quantitative assessment for restored results of the simulated
experiments. We generate noisy data by adding the following
five types of noise.

Case 1 (Gaussian Noise): This case includes four subcases.
Gaussian noise with zero-mean is added to all bands, and the
noise standard deviation in each band is G = 0.1, 0.01, 0.005,
and 0.001, respectively.

Case 2 (Gaussian Noise + Salt and Pepper Noise): This
case includes four subcases. Gaussian noise with zero mean
is added to all bands, and the noise standard deviation is G =
0.1. Furthermore, salt and pepper noise is added to all bands,
and the noise proportion in each band is S = 0.25, 0.2, 0.15,
and 0.1, respectively.

Case 3 (Gaussian Noise + Salt and Pepper Noise + Stripe
Noise): Each band is corrupted by zero-mean Gaussian noise,
and the noise standard deviation is randomly generated from
[0.1, 0.2]. Then, each band is corrupted by salt and pepper
noise with the density randomly generated from [0.1, 0.3]. Fur-
thermore, ten selected bands of WDC Mall and five selected
bands of Pavia City Center are further corrupted by 20 stripes
and 15 stripes, respectively. Especially, the elements of the

1http://lesun.weebly.com/hyperspectral-data-set.html
2http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_

Sensing_Scenes
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TABLE II

QUANTITATIVE COMPARISON OF DIFFERENT METHODS ON THE DATA SET WDC MALL

whole column will set to a certain value randomly generated
from the range of [0.6, 0.8].

Case 4 (Gaussian Noise + Salt and Pepper Noise +
Deadlines): We add Gaussian noise and salt and pepper noise
as Case 3. Ten selected bands of WDC Mall and five selected
bands of Pavia City Center are further corrupted by deadlines
and the number of deadlines in each selected band is randomly
sampled from the set {6, 7, . . . , 10}. Especially, the width of
the deadline is randomly sampled from the set {1, 2, 3}, and
the elements of the whole column are set to zero.

Case 5 (Gaussian Noise + Salt and Pepper Noise + Stripe
Noise + Deadlines): We consider a challenging case. We add
Gaussian noise and salt and pepper noise as Case 3. Besides,

stripe noise and deadlines are added as described in Case 3 and
Case 4, respectively.

Tables II and III give the MPSNR, MSSIM, and SAM
values obtained by all compared restoration methods on the
data sets WDC Mall and Pavia City Center, where the best
and the second-best results are highlighted by bold and under-
line, respectively. We observe that the proposed FRCTR-PnP
obtains an overall better performance than the compared
methods for mixed noise removal, and the MSSIM values
have been greatly improved. We can see that SNLRSF obtains
the best-restored results for case 1. The reason is twofold.
First, SNLRSF can learn a good subspace under pure Gaussian
noise scenarios. Second, SNLRSF uses advanced nonlocal
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TABLE III

QUANTITATIVE COMPARISON OF DIFFERENT METHODS ON THE DATA SET PAVIA CITY CENTER

tensor denoiser while our method uses the basic BM3D
denoiser. Matrix-based method FORPDN and subspace-based
method SNLRSF perform worse than tensor-based methods
SSTV-LRTF and LRTDTV in most cases. Besides, 3DTNN
and 3DLogTNN only consider the low-fibered-rankness, and
the stripes and deadlines are more likely to be regarded as the
low fibered rank part, so 3DTNN and 3DLogTNN perform
not well in cases 3–5. To compare the effects of all the
restoration methods, we show the peak signal-to-noise ratio
(PSNR) values of each band under different cases in Fig. 3.
It can be seen that the proposed method achieves the highest
PSNR values in most cases and bands.

Figs. 4 and 5 display visual performance of restored
results by different methods on the data sets WDC Mall and
Pavia City Center, respectively. We mark the same subre-
gion of each subfigure and enlarge it in a red box. All the

compared methods remove such mixed noise to some extent.
For FORPDN and SNLRSF, they unfold HSIs into the matri-
ces, which destroy the intrinsic structure of HSIs and leads
to some bands of the restored HSIs distortion. SSTV-LRTF
and LRTDTV take use of the whole structure of tensors
and SSTV regularization. However, they fail to well recover
the local details. 3DTNN and 3DLogTNN take advantage
of the structure information in three directions but fail to
remove the stripes and deadlines. Comparatively, FRCTR-PnP
outperforms the compared methods, efficiently removing the
mixed noise and preserving the essential structures and local
details of the clean HSIs.

To further compare the performance of spectral curve recov-
ery, a subcase (the standard deviation of zero-mean Gaussian
noise is G = 0.1, the noise proportion of salt and pepper noise
is S = 0.2) of case 2 and case 5 are selected as two repre-

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on March 27,2023 at 07:10:09 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: HSI RESTORATION BY TENSOR FIBERED RANK CONSTRAINED OPTIMIZATION AND PNP REGULARIZATION 5500717

Fig. 3. PSNR values of restored results by different methods on WDC Mall and Pavia City Center.

Fig. 4. Restored results of band 96 on WDC Mall by different methods. From top to bottom: the results under a subcase (the standard deviation of zero-mean
Gaussian noise is G = 0.1) of case 1, a subcase (the standard deviation of zero-mean Gaussian noise is G = 0.1, the noise proportion of salt and pepper noise
is S = 0.2) of case 2, and cases 3–5, respectively.

sentative cases. Fig. 6 shows the spectral curves at one spatial
location of the restored results by different compared methods.
We clearly observe that the spectral curves obtained by the
proposed FRCTR-PnP better approximate the original ones
than those obtained by the compared methods. In summary,
the above observations illustrate that the proposed FRCTR-
PnP achieves the best performance on mixed noise removal,
fine details preservation, and spectral signatures restoration,
among all compared methods.

The reason why the proposed FRCTR-PnP performs well
is that it uses the fibered rank to capture the global structure
information and PnP regularization to preserve the image
details. On one hand, in the noisy HSIs, the leading tensor
singular values mainly correspond to the overall structure and
image subspace of the HSIs, and the small tensor singular
values mainly correspond to fine details and noise subspace.
So we directly eliminate the small singular values and noise
subspace through the rank constraint, which helps to restore
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Fig. 5. Restored results of band 45 on Pavia City Center by different methods. From top to bottom: the results under a subcase (the standard deviation of
zero-mean Gaussian noise is G = 0.1) of case 1, a subcase (the standard deviation of zero-mean Gaussian noise is G = 0.1, the noise proportion of salt and
pepper noise is S = 0.2) of case 2, and cases 3–5, respectively.

Fig. 6. Spectral curves of the restored results by different compared methods. The first two rows are the results at spatial location (200, 200) of the data
set WDC Mall under a subcase (the standard deviation of zero-mean Gaussian noise is G = 0.1, the noise proportion of salt and pepper noise is S = 0.2) of
case 2 and case 5, respectively. The last two rows are the results at spatial location (42, 20) of the Pavia City Center under a subcase (the standard deviation
of zero-mean Gaussian noise is G = 0.1, the noise proportion of salt and pepper noise is S = 0.2) of case 2 and case 5, respectively.
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Fig. 7. Visual results (first row) and the horizontal mean profiles (second row) of band 108, and the spectral curves at spatial location (44,44) (third row)
by different methods on real HSI Urban.

Fig. 8. Visual results (first row) and the vertical mean profiles (second row) of band 96, and the spectral curves at spatial location (66,66) (third row) by
different methods on real HSI EO-1.

the global structure and remove the noise. On the other hand,
the elimination of small singular values and singular vectors
can also lose a lot of details, which can be restored by the
plugged BM3D regularization.

B. Real Experiments

We consider two real-world HSI data sets in our experi-
ments: the hyperspectral digital imagery collection experiment
(HYDICE) Urban data set3 and Earth Observing-1 (EO-1)
Hyperion data set.4

1) HYDICE Urban Data Set: The original image is of size
307 × 307 × 210, and we use a 200 × 200 × 210 subimage
of the data set for our experiment. The full urban image is
corrupted by stripes, deadlines, water absorption, and other
unknown noise.

3http://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-
View/Article/610433/hypercube/

4http://www.lmars.whu.edu.cn/prof_web/zhanghongyan/resource/noise_
EOI.zip

Fig. 7 shows the visual results (first row) and the horizontal
mean profiles (second row) of band 108, and the spectral curve
(third row) by different methods. We observe from Fig. 7
that 3DTNN and 3DLogTNN cannot effectively remove the
stripes. This is mainly because bands 104–109 and bands
199–210 have a large number of stripes and deadlines in
the same position, which have low-rank structures and thus
are assumed to be the clean part. As a result, the horizontal
mean profiles of band 108 rapidly fluctuates in the noisy
image and the restoration images obtained by 3DTNN and
3DLogTNN. SSTV-LRTF and LRTDTV can remove lots of
noise, but the restored images are smooth and lose a lot
of details. FORPDN and SNLRSF remove almost all the
noise, but cannot reconstruct the edges of the image well.
Comparatively, the proposed FRCTR-PnP obtains the best
visual result, especially in noise removal and restoration of
global structure and fine details.

2) EO-1 Hyperion Data set [51]: The size of the original
image is 400 × 1000 × 242, and we use a 200 × 200 × 166
subimage of the data set for our experiment. The EO-1 image
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Fig. 9. Comparison of two restored results. (a) Clean image. (b) Noisy
image. (c) Restored by truncated SVD. (d) Restored by randomized SVD.
(e) Residual vectors of restored images and clean image.

is mainly corrupted by stripes, water atmosphere, and other
complex noise.

Fig. 8 shows the visual results (first row) and the vertical
mean profiles (second row) of band 96, and the spectral curves
at spatial location (66,66) (third row) by different methods.
There are many stripes and deadlines in bands 1–6, bands
94–97, bands 129–139, and bands 160–166. It is clear that the
values of the stripes in band 96 are not very different from the
surrounding values, and the vertical mean profile fluctuates,
but not very much. Here, we can clearly observe that there
are still some stripes and distortion in the magnified areas
restored by FORPDN, SSTV-LRTF, LRTDTV, and 3DTNN.
Compared to SNLRSF, the proposed FRCTR-PnP can restore
more details. The spectral curve obtained by the proposed
FRCTR-PnP is smoother than the compared methods.

C. Discussion

1) Contribution of Two Building Blocks: The building
blocks of the proposed method are 3DRT-SVD, and BM3D.

Fig. 10. MPSNR values with respect to the iteration number.

Fig. 11. Influence of the fibered rank. (a) Values of MPSNR for WDC Mall.
(b) Values of MPSNR for Pavia City Center.

The building blocks are complementary to each other, rather
than isolated and uncorrelated. We discuss the contributions
of the two building blocks, based on the simulated data set
WDC Mall. Each band of WDC Mall data set is corrupted by
zero-mean Gaussian noise with the noise standard deviation is
randomly generated from [0.1, 0.2] and salt and pepper noise
with the density randomly generated from [0.1, 0.3]. First,
we introduce the following FRCTR model:

min
X ,S

�S�1

s.t. �Y − X − S�2
F ≤ �, rankf (X ) ≤ [r1, r2, r3]. (29)

In Table IV, we show the indicators of restored results obtained
by five models BM3D, 3DTNN, 3DLogTNN, FRCTR, and
FRCTR-PnP. Based on this empirical study, we give some
discussion.

a) Contribution of 3DRT-SVD: In Table IV, the restored
results of the 3DRT-SVD method are better than the
3DTT-SVD method. We explain this phenomenon by the
following two points.

First, to intuitively compare the two methods, we perform
matrix versions truncated SVD and randomized SVD [80] of
them on the noisy image: the Gaussian noise is of variance
0.02 and the percentage of impulse noise is 0.1. An example
is shown in Fig. 9. By comparing (b) and (c), we can see
that the truncated SVD can remove partial noise by dropping
small singular values and the corresponding singular vectors.
From the results of (d) and (e), we can see that the restoration
effect of randomized SVD is better than that of truncated
SVD, and the residual vector of randomized SVD is smaller
than that of truncated SVD. The above phenomena indicate
that randomized SVD preserves the intrinsic information of
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TABLE IV

MPSNR, MSSIM, AND CPU TIME OF RESTORED RESULTS OBTAINED BY BM3D, 3DTNN, 3DLOGTNN, FRCTR, AND FRCTR-PNP

Fig. 12. Influence of the tuning parameter on the data sets WDC Mall and Pavia City Center under cases 1 and 2.

the image and removes part of noise compared with truncated
SVD.

Second, we show the change of MPSNR values in the
FRCTR model with respect to the iteration number in Fig. 10.
We can see from the figure that the MPSNR values of
3DRT-SVD are higher than those of 3DTT-SVD in all iteration
numbers; with each step of accumulation, the final MPSNR
value of 3DRT-SVD is higher than that of the 3DTT-SVD; in
the FRCTR model, using 3DRT-SVD needs fewer iterations
than 3DTT-SVD to reach the convergence condition.

b) Contribution of BM3D: From Table IV, we can
observe that compared with BM3D denoising alone, our
model has obvious advantages in mixed noise removal. Com-
pared with the restored results of FRCTR and FRCTR-PnP,
we can see that FRCTR-PnP shows significant improvement
in MPSNR and MSSIM. This is because when we integrate
BM3D into the PnP framework, BM3D and low-rankness con-
straint are complementary to each other, rather than isolated
and uncorrelated, which lead to better-restored results.

2) Parameter Analysis: We discuss the influence of para-
meters, based on the simulated data sets under cases 1–5.
Specifically, in the FRCTR-PnP method, these parameters can
be roughly divided into four categories.

a) Influence of the fibered rank: The low-rankness prior
with fibered rank [r1, r2, r3] captures the global structure
of HSIs. Before running the algorithm, we should give
an estimate of the fibered rank along the three modes.

The mode-1 and mode-2 fibered rank related to the spectral
directions should be small, since the spectral bands are highly
correlated. In case 1 and case 2, we assume that mode-1 fibered
rank and mode-2 fibered rank are equal. Fig. 11 shows the sen-
sitivity analysis of the fibered rank. It can be easily observed
that the MPSNR values first increase and then decrease with
the growth of the estimated fibered rank. This is because when
the estimated fibered rank is small, global information cannot
be explored well. When the estimated fibered rank is large,
some singular values and singular vectors corresponding to
noise subspace are also included. Besides, considering that
the larger fibered rank leads to high computational complexity,
we set the decided fibered rank [8, 8, 180] and [4, 4, 110] for
WDC Mall and Pavia City Center, respectively. As for case 3,
case 4, and case 5, it is changed to restore the noisy HSIs
since there are many stripes and deadlines, so we can reduce
the fibered rank properly, then BM3D further preserves local
details.

b) Influence of the oversampling parameters: In [81],
Theorem 4 shows that the larger the oversampling parameters
[p1, p2, p3], the better the approximation effect. We finally
choose [30, 30, 50] for all the experiments for balancing the
running time and accuracy,

c) Influence of the regularization parameter λ: The tun-
ing parameter actually regularizes the parameter σ in the
denoiser. Fig. 12 shows the influence of the tuning parameter
on the data sets WDC Mall and Pavia City Center under
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TABLE V

ANALYSIS OF FIVE TERMS IN (27)

Fig. 13. History of relative change curves for a subcase (the standard
deviation of zero mean Gaussian noise is G = 0.1, the noise proportion of
salt and pepper noise is S = 0.2) of case 2 and case 5 on the data sets WDC
Mall and Pavia City Center.

cases 1 and 2. We can clearly observe that the optimal
value of λ is increasing as the Gaussian noise standard
deviation increases. When the parameter λ is too small or
large, we cannot obtain satisfying restored results. It achieves
the optimal performance with a proper λ, which well balances
noise removal and details preservation.

d) Influence of the penalty parameters: βk (k = 1, . . . , 5)
are introduced in the augmented Lagrangian function. In (27),
they are used to balance the proportion between the five terms,
as shown in Table V. In [65], (1, 1, 0.001)/2.001 is used as
the weighted coefficient of 3DTNN. Therefore, considering
the meaning of the five terms, βk (k = 1, 2, 4, 5) are fixed at
0.1, and β3 is selected from the set {10−2, 10−3, 10−4, 10−5}.

3) Convergence Analysis: Since the proposed model is a
nonconvex optimization problem with an implicit regulariza-
tion, its theoretical convergence is still an open problem.
Thus, we discuss the numerical convergence behavior. Fig. 13
displays the relative change curves of the proposed method
for a subcase (the standard deviation of zero mean Gaussian
noise is G = 0.1, the noise proportion of salt and pepper noise
is S = 0.2) of case 2 and case 5 on the data sets WDC Mall
and Pavia City Center. We clearly observe that although there
have fluctuations in the middle of the convergence curves,
the overall trend is decreasing steadily, which illustrates the
numerical convergence of the proposed algorithm. Therefore,
it can be applied to practical situations.

V. CONCLUSION

In this article, we propose a tensor-based HSI restoration
method FRCTR-PnP. Specifically, the low fibered rank is
utilized to characterize the global spatial–spectral correlation
among all HSI bands, and a PnP-based regularization is
introduced to further exploit the NSS of HSI. Then, we develop
the ADMM algorithm to tackle the proposed model. For
robustness, we suggest the 3DRT-SVD to solve the subproblem

of low-fibered rank approximation, which preserves the intrin-
sic structure of the clean HSI and removes partial noise by
projecting the HSI onto a low-dimensional essential subspace.
The simulated and real experiments and discussions demon-
strate that the proposed method achieves superior performance
over compared methods quantitatively and qualitatively. This is
because the FRCTR can help to restore the global information
of the target HSI, while the embedded BM3D is beneficial to
preserve the image details and remove the low-rank structure
noise.

APPENDIX

In this appendix, we give detailed proof for Lemma 1.
Proof:

1) For the Case of Matrix: The singular value decomposi-
tion (SVD) of matrix F can be described as

F = U SV H

where U and V are orthogonal matrices, and S =
diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ σn ≥ 0. Writing U
and V in terms of their columns

U = (u1, . . . , un) and V = (v1, . . . , vn)

then u j and v j are the left and right singular vectors
corresponding to σ j . Then the rank-k truncated SVD of
F is

F̂ = (u1, . . . , uk)diag(σ1, . . . , σk)(v1, . . . , vk)
H

= Uk Sk V H
k

= UkU H
k [Uk Us]

�
Sk

Ss

��
V H

k
V H

s

�
= UkU H

k F (30)

since U H
k Uk is the identity matrix, and U H

k Us is the zero
matrix.

2) For the Case of Tensor: The tensor SVD (T-SVD) of
tensor F̂ is

F̂ = U ∗ S ∗ VH .

Then the truncated T-SVD of F̂ is

F = U k ∗ Sk ∗ (Vk)H = U k ∗ (U k)H ∗ F̂ .

According to the truncated T-SVD algorithm, we first trans-
form tensor F̂ into the Fourier domain. Next, we compute
rank-k truncated SVD of each band. Here, we can use (30)
of matrix truncated SVD. Last, we take the inverse Fourier
transform and transform the obtained tensors back to the
original domain. �
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