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 A B S T R A C T

Fully-connected tensor network (FCTN) decomposition has become a powerful tool for handling high-
dimensional data. However, for a given 𝑁th-order data, 𝑁(𝑁 − 1)∕2 tuning parameters (i.e., FCTN rank) 
in FCTN decomposition is a tricky challenge, which hinders its wide deployments. Although many recent 
works have emerged to adaptively search for a (near)-optimal FCTN rank, these methods suffer from expensive 
computational costs since they require too many search and evaluation processes, significantly limiting their 
applications to high-dimensional data. To tackle the above challenges, we develop a rank-revealing FCTN 
(revealFCTN) decomposition, whose FCTN rank is adaptively and efficiently inferred. More specifically, by 
analyzing the sizes of the sub-network tensors in the FCTN decomposition, we establish the equivalent 
relationships between the FCTN rank and the ranks of single-mode and double-mode unfolding matrices of 
the given data. The FCTN rank can be directly revealed through the ranks of these unfolding matrices, which 
does not require any search and evaluation process, making the computational cost almost negligible compared 
to the search-based methods. To evaluate the performance of the developed revealFCTN decomposition, we 
test its performance on a representative task: tensor completion (TC). Comprehensive experimental results 
demonstrate that our method outperforms several state-of-the-art methods, achieving a MPSNR gain of around 
1 dB in most cases compared to the original FCTN decomposition.
1. Introduction

With the rapid development of science and technology, various 
types of high-dimensional data (e.g., multispectral images, color videos, 
and light field images) have emerged, which can be intuitively rep-
resented by high-dimensional tensors [1,2]. However, the ‘‘curse of 
dimensionality’’ remains a serious problem [3,4], i.e., the storage and 
computation costs increase exponentially with the growth of tensor 
order. Tensor decompositions, which decompose a high-dimensional 
tensor into a set of low-order latent factors, are efficient tools to address 
these cost issues. Recently, many tensor network (TN) decompositions 
have been proposed and successfully applied to image processing [5–7], 
computer vision [8–10], and neural network compression [11–13].

Many manually constructed TN decompositions have garnered con-
siderable attention. Tensor train (TT) decomposition [14,15] is the 
most famous one, represented as a chained TN. TT decomposition 
breaks down an 𝑁th-order tensor into sequential multi-linear prod-
ucts over a sequence of factors with matrices as the first and last 
factors and 𝑁 − 2 third-order tensors as intermediate factors [16,17]. 
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In the quantum physics community, the TT format is frequently re-
ferred to as the matrix product state representation [18,19]. By further 
establishing the connection between the first and last factors of TT 
decomposition, tensor ring (TR) decomposition [20–22] represents an 
𝑁th-order tensor into sequential multi-linear products over 𝑁 third-
order tensors, forming a circular TN. Moreover, by establishing the 
connection between any two nonadjacent factors of TR decomposi-
tion, fully-connected TN (FCTN) decomposition [23–25] decomposes 
an 𝑁th-order tensor into sequential multi-linear products over 𝑁 𝑁th-
order tensors, which is a complete TN. Although FCTN decomposition 
has demonstrated excellent capabilities in high-dimensional data pro-
cessing, a notable challenge remains: determining the 𝑁(𝑁 − 1)∕2
hyperparameters (i.e., FCTN rank) for FCTN decomposition in practical 
applications. Identifying a suitable FCTN rank through manual tuning is 
extremely time-consuming, as illustrated in Fig.  1(c). Furthermore, for 
higher-order data (e.g., 𝑁 = 5), the cost of adjusting so many (e.g., 10) 
hyperparameters is prohibitive.
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Fig. 1. An overview scheme of the proposed revealFCTN. (a) Topological structure of the FCTN decomposition. (b) Rank estimation methods. (c) Recovered color video Grandma
with SR = 5%. Our method achieves 57× and 23 × speed-up compared with FCTN and greedyFCTN, respectively.  (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)
Many works have turned to investigating search-based methods
[26–28] for adaptively determining a suitable FCTN rank. Hashem-
izadeh et al. utilized a simple greedy approach (termed as greedyFCTN) 
to incrementally increase the rank of the most promising edge to 
improve the performance of the FCTN decomposition model, but each 
determination of the promising edge requires simulation and compari-
son of 𝑁(𝑁 −1)∕2 cases [29]. Li and Sun represented the FCTN decom-
position as an undirected graph and used a genetic algorithm to search 
for the optimal FCTN rank iteratively [30]. Subsequently, Li et al. 
developed a novel meta-heuristic method for TN permutation search by 
comparing the random sampling parts within a theoretically established 
neighborhood and then cyclically updating the neighborhood until 
convergence [31]. While these adaptive search-based methods typically 
yield excellent results in practice, they require too many search and 
evaluation processes, significantly increasing the computational cost 
and making them unaffordable for high-dimensional data [32,33], as 
depicted in Fig.  1(c).

To address the above challenges, we propose a rank-revealing FCTN 
(revealFCTN) decomposition, which fully leverages the FCTN structure 
and the data correlations. On the one hand, this method can adap-
tively determine an appropriate FCTN rank for any given data. On 
the other hand, this method does not require any search or evaluation 
process, so the computational cost is almost negligible compared to the 
search-based methods.

Objective. This study aims to develop a simple and efficient adap-
tive rank estimation method for the FCTN decomposition that can be 
applied broadly across various types of high-dimensional data, such as 
videos, remote sensing images, and traffic flow data.

Contributions. The contributions of this paper are twofold:

• We develop a revealFCTN decomposition, whose FCTN rank is 
efficiently estimated. Specifically, by analyzing the sizes of the 
sub-network tensors in the FCTN decomposition, we establish the 
equivalent relationships between the FCTN rank and the ranks of 
the single-mode and double-mode unfolding matrices of the given 
tensor. Thus, the FCTN rank can be directly inferred through the 
ranks of these unfolding matrices.

• We evaluate the potential of the revealFCTN decomposition on 
tensor completion (TC) task. We propose a revealFCTN decomposi
tion-based TC model and utilize a proximal alternating minimiza-
tion (PAM)-based algorithm to solve it. Extensive experimental 
2

results show that our method achieves superior results compared 
to manually constructed TN decompositions in a similar or less 
time, while achieving comparable results to that obtained by 
greedyFCTN (a classic search-based method) in significantly less 
time.

The remainder is structured as follows. Section 2 introduces the pro-
posed revealFCTN decomposition and the revealFCTN decomposition-
based TC method. Section 3 presents extensive experiments on third-
order, fourth-order, and fifth-order data to verify the effectiveness 
and efficiency of the proposed method. Section 4 provides a detailed 
discussion. Finally, the conclusion is drawn in Section 5.

Notation. In this paper, we use lowercase letters (e.g., 𝑥 ∈ R1) 
to denote scalars, lowercase bold letters (e.g., 𝐱 ∈ R𝐼1 ) to denote 
vectors, uppercase bold letters (e.g., 𝐗 ∈ R𝐼1×𝐼2 ) to denote matrices, 
and calligraphic letters (e.g.,  ∈ R𝐼1×𝐼2×⋯×𝐼𝑁 ) to denote tensors. 
The (𝑖1, 𝑖2,… , 𝑖𝑁 )-th entry of the 𝑁th-order tensor  ∈ R𝐼1×𝐼2×⋯×𝐼𝑁

is denoted as (𝑖1, 𝑖2,… , 𝑖𝑁 ), where 𝑖𝑛 ∈ [𝐼𝑛], 𝑛 ∈ [𝑁], and [𝑁]
represents the set {1, 2,… , 𝑁}. For index (𝑖1, 𝑖2,… , 𝑖𝑁 ), the notation 
𝑖1𝑖2 ⋯ 𝑖𝑁

𝑑𝑒𝑓
= 1 +

∑𝑁
𝑗=1(𝑖𝑗 − 1)

∏𝑗−1
𝑛=1 𝐼𝑛 is useful for unfolding matrices of 

a tensor. The inner product between  and  is defined as ⟨ ,⟩ ∶=
∑

𝑖1 ,𝑖2 ,…,𝑖𝑁
(𝑖1, 𝑖2,… , 𝑖𝑁 )(𝑖1, 𝑖2,… , 𝑖𝑁 ). The Frobenius norm of  is 

denoted as ‖‖𝐹 ∶=
√

⟨ ,⟩.

2. The proposed revealFCTN method

In this section, we introduce the revealFCTN decomposition and its 
application to TC task detailedly.

2.1. Preliminaries

Tensor networks offer intuitive graphical representations for ten-
sors, tensor operations, and TN decompositions.

For an 𝑁th-order tensor, its TN representation is depicted in Fig.  2 
(d1). Here, the vertex denotes the tensor, the number of edges denotes 
the order of the tensor, each edge denotes a mode, and the number 
on each edge represents the dimension of this mode. Specifically, 
scalar, vector, and matrix can be viewed as zero-order, first-order, and 
second-order tensors, respectively, as shown in Fig.  2(a1–c1).

TN can intuitively represent the tensor contraction (one of the 
most fundamental tensor operators) of two tensors by connecting their 
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Fig. 2. (First row) Tensor network representation of scalar, vector, matrix, tensor, matrix multiplication, tensor–matrix multiplication, and tensor inner product, respectively. 
(Second row) Tensor network decompositions of an 𝑁th-order tensor  .
matching edges with the same dimensions, and the hanging edges 
represent the modes of the resulting tensor. For instance, the classic 
matrix multiplication between 𝐗 ∈ R𝐼1×𝐼2  and 𝐘 ∈ R𝐼2×𝐼3  is illustrated 
in Fig.  2 (e1), where the hanging edges (i.e., 𝐼1, 𝐼3) denote the modes of 
the resulting matrix, and the dotted line (i.e., 𝐼2) denotes the contracted 
mode. Similarly, tensor–matrix multiplication and tensor inner product 
are presented in Fig.  2(f1) and (g1), respectively.

TNs can also naturally represent TN decompositions, which decom-
pose an 𝑁th-order tensor into the tensor contraction of a series of factor 
tensors (e.g., 𝑛, 𝑛 ∈ [𝑁]). The TT, TR, and FCTN decompositions 
mentioned in the introduction are some of the extensively studied TN 
decompositions, as depicted in Fig.  2(a2–c2).

Given an 𝑁th-order tensor  ∈ R𝐼1×𝐼2×⋯×𝐼𝑁 , the FCTN
decomposition decomposes  into 𝑁 𝑁th-order factor tensors 𝑛 ∈
R𝑅1,𝑛×⋯×𝑅𝑛−1,𝑛×𝐼𝑛×𝑅𝑛,𝑛+1×⋯×𝑅𝑛,𝑁 (𝑛 = 1, 2,… , 𝑁). The element-wise form 
of the FCTN decomposition is expressed as 

(𝑖1, 𝑖2,… , 𝑖𝑁 ) =
𝑅1,2
∑

𝑟1,2=1

𝑅1,3
∑

𝑟1,3=1
⋯

𝑅1,𝑁
∑

𝑟1,𝑁=1

𝑅2,3
∑

𝑟2,3=1
⋯

𝑅2,𝑁
∑

𝑟2,𝑁=1
⋯

𝑅𝑁−1,𝑁
∑

𝑟𝑁−1,𝑁=1

{1(𝑖1, 𝑟1,2, 𝑟1,3,… , 𝑟1,𝑁 )

2(𝑟1,2, 𝑖2, 𝑟2,3,… , 𝑟2,𝑁 )⋯

𝑛(𝑟1,𝑛, 𝑟2,𝑛,… , 𝑟𝑛−1,𝑛, 𝑖𝑛, 𝑟𝑛,𝑛+1,… , 𝑟𝑛,𝑁 )⋯

𝑁 (𝑟1,𝑁 , 𝑟2,𝑁 ,… , 𝑟𝑁−1,𝑁 , 𝑖𝑁 )}.

(1)

Generally, we employ  = FCTN({𝑛}𝑁𝑛=1) to compactly denote the 
above FCTN decomposition. The corresponding FCTN rank is defined 
as an upper triangular matrix 

𝐑 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 𝑅1,2 𝑅1,3 ⋯ 𝑅1,𝑁
0 0 𝑅2,3 ⋯ 𝑅2,𝑁
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝑅𝑁−1,𝑁
0 0 0 ⋯ 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (2)

The FCTN rank contains 𝑁(𝑁 −1)∕2 parameters, which grows quadrat-
ically with the tensor order 𝑁 . This parameter problem significantly 
limits the widespread application of FCTN decomposition in high-order 
data.
3

2.2. Adaptive rank reveal of FCTN decomposition

By analyzing the structural characteristics of FCTN decomposition, 
the FCTN rank can be simply and directly revealed through the ranks of 
unfolding matrices of the high-dimensional data. More specifically, by 
analyzing the sizes of the sub-network tensors in FCTN decomposition, 
we establish the equivalent relationships between the FCTN rank and 
the ranks of the single-mode and double-mode unfolding matrices of 
the tensor. Through the equivalent relationships, we can directly infer 
the FCTN rank based on the ranks of these unfolding matrices.

Firstly, we define the single-mode and double-mode unfolding ma-
trices of a tensor and their ranks.

Definition 1 (Single-mode Unfolding Matrix and its Rank). Given an 𝑁th-
order tensor  ∈ R𝐼1×𝐼2×⋯×𝐼𝑁 , its single-mode unfolding matrix is 
𝐗
⟨𝑛⟩ ∈ R𝐼𝑛×

∏𝑁,≠𝑛
𝑘=1 𝐼𝑘  (𝑛 ∈ [𝑁]) defined element-wise via 

𝐗
⟨𝑛⟩(𝑖𝑛, 𝑖1 ⋯ 𝑖𝑛−1𝑖𝑛+1 ⋯ 𝑖𝑁 )

𝑑𝑒𝑓
= (𝑖1, 𝑖2,… , 𝑖𝑁 ). (3)

The rank of 𝐗
⟨𝑛⟩ is estimated by using 𝛿-truncated singular value 

decomposition (SVD) of 𝐗
⟨𝑛⟩, denoted as 𝑟𝑎𝑛𝑘(𝐗⟨𝑛⟩).

The single-mode unfolding matrix of  is essentially the classic 
mode-𝑘 unfolding matrix [1] of  .

Definition 2 (Double-mode Unfolding Matrix and its Rank). Given an 
𝑁th-order tensor  ∈ R𝐼1×𝐼2×⋯×𝐼𝑁 , its double-mode unfolding matrix
is 𝐗

⟨𝑛1 ,𝑛2⟩ ∈ R𝐼𝑛1 𝐼𝑛2×
∏𝑁,≠𝑛1 ,≠𝑛2

𝑘=1 𝐼𝑘  (1 ≤ 𝑛1 < 𝑛2 ≤ 𝑁) defined element-wise 
via 
𝐗
⟨𝑛1 ,𝑛2⟩(𝑖𝑛1 𝑖𝑛2 , 𝑖1 ⋯ 𝑖𝑛1−1𝑖𝑛1+1 ⋯ 𝑖𝑛2−1𝑖𝑛2+1 ⋯ 𝑖𝑁 )

𝑑𝑒𝑓
= (𝑖1, 𝑖2,… , 𝑖𝑁 ). (4)

The rank of 𝐗
⟨𝑛1 ,𝑛2⟩ is estimated by using 𝛿-truncated SVD of 𝐗

⟨𝑛1 ,𝑛2⟩, 
denoted as 𝑟𝑎𝑛𝑘(𝐗

⟨𝑛1 ,𝑛2⟩).

Secondly, we present some special sub-network tensors and their 
complementary sub-network tensors in the FCTN decomposition. The 
definition of sub-network tensor and its complementary sub-network 
tensor is as follows.
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Fig. 3. The sub-network tensors in FCTN decomposition. In (b2) and (c2), we highlight the hanging rank modes and omit some contracted rank modes.
Table 1
The sizes of sub-network tensors and reshaped matrices, where 

[

×𝑛−1
𝑘=1𝑅𝑘,𝑛

]

 and ∏𝑛−1
𝑘=1 𝑅𝑘,𝑛 denote 𝑅1,𝑛 × 𝑅2,𝑛 ×⋯ × 𝑅𝑛−1,𝑛 and 𝑅1,𝑛𝑅2,𝑛 ⋯𝑅𝑛−1,𝑛, respectively.

 Sub-network tensor Size Reshaped matrices Size  
 𝑛

[

×𝑛−1
𝑘=1𝑅𝑘,𝑛

]

× 𝐼𝑛 ×
[

×𝑁
𝑘=𝑛+1𝑅𝑛,𝑘

]

𝐅𝑛 𝐼𝑛 ×
∏𝑛−1

𝑘=1 𝑅𝑘,𝑛
∏𝑁

𝑘=𝑛+1 𝑅𝑛,𝑘  
 [𝑁]∕𝑛

[

×𝑛−1
𝑘=1(𝐼𝑘 × 𝑅𝑘,𝑛)

]

×
[

×𝑁
𝑘=𝑛+1(𝑅𝑛,𝑘 × 𝐼𝑘)

]

𝐅[𝑁]∕𝑛
∏𝑛−1

𝑘=1 𝑅𝑘,𝑛
∏𝑁

𝑘=𝑛+1 𝑅𝑛,𝑘 ×
∏𝑁,≠𝑛

𝑘=1 𝐼𝑘  
 (𝑛1 ,𝑛2 )

[

×𝑛1−1
𝑘=1 𝑅𝑘,𝑛1

]

× 𝐼𝑛1 ×
[

×𝑛2−1
𝑘=𝑛1+1

𝑅𝑛1 ,𝑘

]

×
[

×𝑁
𝑘=𝑛2+1

𝑅𝑛1 ,𝑘

]

×
[

×𝑛1−1
𝑘=1 𝑅𝑘,𝑛2

]

×
[

×𝑛2−1
𝑘=𝑛1+1

𝑅𝑘,𝑛2

]

× 𝐼𝑛2 ×
[

×𝑁
𝑘=𝑛2+1

𝑅𝑛2 ,𝑘

]

𝐅(𝑛1 ,𝑛2 ) 𝐼𝑛1 𝐼𝑛2 ×
∏𝑛1−1

𝑘=1 𝑅𝑘,𝑛1
∏𝑁,≠𝑛2

𝑘=𝑛1+1
𝑅𝑛1 ,𝑘

∏𝑛2−1,≠𝑛1
𝑘=1 𝑅𝑘,𝑛2

∏𝑁
𝑘=𝑛2+1

𝑅𝑛2 ,𝑘  

 [𝑁]∕𝑛1 ,𝑛2

[

×𝑛1−1
𝑘=1 (𝐼𝑘 × 𝑅𝑘,𝑛1 × 𝑅𝑘,𝑛2 )

]

×
[

×𝑛2−1
𝑘=𝑛1+1

(𝑅𝑛1 ,𝑘

×𝐼𝑘 × 𝑅𝑘,𝑛2 )
]

×
[

×𝑁
𝑘=𝑛2+1

(𝑅𝑛1 ,𝑘 × 𝑅𝑛2 ,𝑘 × 𝐼𝑘)
]

𝐅[𝑁]∕𝑛1 ,𝑛2
∏𝑛1−1

𝑘=1 𝑅𝑘,𝑛1
∏𝑁,≠𝑛2

𝑘=𝑛1+1
𝑅𝑛1 ,𝑘

∏𝑛2−1,≠𝑛1
𝑘=1 𝑅𝑘,𝑛2

∏𝑁
𝑘=𝑛2+1

𝑅𝑛2 ,𝑘 ×
∏𝑁,≠𝑛1 ,≠𝑛2

𝑘=1 𝐼𝑘

 

Definition 3 (Sub-network Tensor and its Complementary Sub-network 
Tensor). Suppose an 𝑁th-order tensor  has FCTN form with factors 
{𝑛}𝑁𝑛=1, 𝐧1 is a subset of {1, 2,… , 𝑁}, 𝐧2 is the complementary set of 
𝐧1. Then the sub-network tensor is obtained by tensor contraction of 
{𝑛}𝑛∈𝐧1 , denoted as 𝐧1 , and its complementary sub-network tensor
is constructed by tensor contraction of {𝑛}𝑛∈𝐧2 , denoted as 𝐧2 .

We mainly consider the sub-network tensors obtained by tensor con-
traction of one factor and two factors, corresponding to the single-mode 
and double-mode unfolding matrices, respectively. The sub-network 
tensor computed by tensor contraction of one factor, 𝑛 (𝑛 ∈ [𝑁]), is 
denoted as 𝑛, and its complementary sub-network tensor is denoted 
as [𝑁]∕𝑛, which is computed by tensor contraction of the remaining 
𝑁 − 1 factors (i.e., {𝑘}

𝑁,≠𝑛
𝑘=1 ), as illustrated in Fig.  3 (b1) and (b2). 

Similarly, the sub-network tensor obtained by tensor contraction of 
two factors, 𝑛1  and 𝑛2  (1 ≤ 𝑛1 < 𝑛2 ≤ 𝑁), is denoted as (𝑛1 ,𝑛2), 
and its complementary sub-network tensor is denoted as [𝑁]∕𝑛1 ,𝑛2 , 
which is obtained by tensor contraction of the remaining 𝑁 − 2 factors 
(i.e., {𝑘}

𝑁,≠𝑛1 ,≠𝑛2
𝑘=1 ), as shown in Fig.  3 (c1) and (c2).

Thirdly, we establish the equivalent relationships between the FCTN 
rank and the ranks of single-mode and double-mode unfolding matrices 
of the given tensor in the following two lemmas. According to Defini-
tion  3,  equals the tensor contraction of 𝑛 and [𝑁]∕𝑛, and also the 
tensor contraction of (𝑛1 ,𝑛2) and [𝑁]∕𝑛1 ,𝑛2 . Therefore, we can induce 

𝐗
⟨𝑛⟩ = 𝐅𝑛𝐅[𝑁]∕𝑛 and 𝐗

⟨𝑛1 ,𝑛2⟩ = 𝐅(𝑛1 ,𝑛2)𝐅[𝑁]∕𝑛1 ,𝑛2 , (5)

where 𝐅𝑛, 𝐅[𝑁]∕𝑛, 𝐅(𝑛1 ,𝑛2), and 𝐅[𝑁]∕𝑛1 ,𝑛2  are unfolding matrices of 𝑛, 
[𝑁]∕𝑛, (𝑛1 ,𝑛2), and [𝑁]∕𝑛1 ,𝑛2 , respectively. Moreover, we summarize 
the sizes of these sub-network tensors and their unfolding matrices in 
Table  1.
4

Assuming that Eq.  (5) represents the maximum rank decomposition 
of 𝐗

⟨𝑛⟩ and 𝐗⟨𝑛1 ,𝑛2⟩, we can establish the equivalence relationships 
between the FCTN rank (i.e., 𝑅𝑛1 ,𝑛2 ) and the ranks of single-mode 
and double-mode unfolding matrices of tensor  (i.e., rank(𝐗

⟨𝑛⟩) and 
rank(𝐗

⟨𝑛1 ,𝑛2⟩)). The following two lemmas detail these equivalence 
relationships. 

Lemma 1.  Suppose an 𝑁 th-order tensor  has FCTN form, i.e.,  =
FCTN({𝑛}𝑁𝑛=1), the relationship between the FCTN rank 𝑅𝑛1 ,𝑛2  and the 
rank of single-mode unfolding matrix 𝑟𝑎𝑛𝑘(𝐗

⟨𝑛⟩) is

𝑟𝑎𝑛𝑘(𝐗
⟨𝑛⟩) =

𝑛−1
∏

𝑘=1
𝑅𝑘,𝑛

𝑁
∏

𝑘=𝑛+1
𝑅𝑛,𝑘. (6)

Lemma 2.  Suppose an 𝑁 th-order tensor  has FCTN form, i.e.,  =
FCTN({𝑛}𝑁𝑛=1), the relationship between the FCTN rank 𝑅𝑛1 ,𝑛2  and the 
rank of double-mode unfolding matrix 𝑟𝑎𝑛𝑘(𝐗

⟨𝑛1 ,𝑛2⟩) is

𝑟𝑎𝑛𝑘(𝐗
⟨𝑛1 ,𝑛2⟩)

=
𝑛1−1
∏

𝑘=1
𝑅𝑘,𝑛1

𝑁,≠𝑛2
∏

𝑘=𝑛1+1
𝑅𝑛1 ,𝑘

𝑛2−1,≠𝑛1
∏

𝑘=1
𝑅𝑘,𝑛2

𝑁
∏

𝑘=𝑛2+1
𝑅𝑛2 ,𝑘

=

∏𝑛1−1
𝑘=1 𝑅𝑘,𝑛1

∏𝑁
𝑘=𝑛1+1

𝑅𝑛1 ,𝑘
∏𝑛2−1

𝑘=1 𝑅𝑘,𝑛2
∏𝑁

𝑘=𝑛2+1
𝑅𝑛2 ,𝑘

𝑅2
𝑛1 ,𝑛2

=
𝑟𝑎𝑛𝑘(𝐗

⟨𝑛1⟩)𝑟𝑎𝑛𝑘(𝐗⟨𝑛2⟩)

𝑅2
𝑛1 ,𝑛2

.

(7)

According to Lemmas  1 and 2, FCTN rank can be estimated by 
the ranks of its single-mode and double-mode unfolding matrices. 
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Algorithm 1 : FCTN rank estimation
  Input: An 𝑁th-order tensor  ∈ R𝐼1×𝐼2×⋯×𝐼𝑁  and prescribed relative 
error 𝛿.
  Output: FCTN rank 𝑅𝑛1 ,𝑛2 (1 ≤ 𝑛1 < 𝑛2 ≤ 𝑁).
1: for 𝑛1 = 1 to 𝑁 do
2:  Estimate rank(X<𝑛1>) by 𝛿-truncated SVD.
3:  for 𝑛2 = 𝑛1 + 1 to 𝑁 do
4:  Estimate rank(X<𝑛1 ,𝑛2>) by 𝛿-truncated SVD.
5:  end for
6: end for
7: Compute FCTN rank according to equation (8).

Specifically, the adaptively revealed FCTN rank of a given tensor 
is 

𝑅𝑛1 ,𝑛2 =
⎢

⎢

⎢

⎣

√

𝑟𝑎𝑛𝑘(𝐗
⟨𝑛1⟩)𝑟𝑎𝑛𝑘(𝐗⟨𝑛2⟩)

𝑟𝑎𝑛𝑘(𝐗
⟨𝑛1 ,𝑛2⟩)

⎤

⎥

⎥

⎥

, 1 ≤ 𝑛1 < 𝑛2 ≤ 𝑁, (8)

where 𝐗
⟨𝑛1⟩ and 𝐗⟨𝑛1 ,𝑛2⟩ denote the single-mode and double-mode 

unfolding matrices of  , respectively, and ⌊𝑥⌉ denotes rounding 𝑥.
The whole process of FCTN rank estimation is summarized in Algo-

rithm 1.

2.3. The revealFCTN decomposition

Based on the adaptively revealed FCTN rank, we propose the re-
vealFCTN decomposition.

Algorithm 2 revealFCTN decomposition.
  Input: An 𝑁th-order data  ∈ R𝐼1×𝐼2×⋯×𝐼𝑁  and prescribed relative 
error 𝛿.
  Output: The factors {𝑛}𝑁𝑛=1 of the revealFCTN decomposition.
1: Initialize 𝑡 = 0 and 𝑡max=1000;
2: Estimate the FCTN rank of  by Algorithm 1, and draw factors 

{0
𝑛 }

𝑁
𝑛=1 sampled from a uniform distribution with the estimated 

FCTN rank;
3: while not converged and 𝑡 < 𝑡max do
4:  for 𝑛 =1 to 𝑁 do
5:  Compute sub-network tensor  𝑡

[𝑁]∕𝑛 according to Definition 
3.

6:  Obtain F𝑡+1𝑛 = [X𝑡
<𝑛>(F

𝑡
[𝑁]∕𝑛)

T]∕[F𝑡[𝑁]∕𝑛(F
𝑡
[𝑁]∕𝑛)

T];
7:  Update  𝑡+1

𝑛 (𝑟1,𝑛,⋯ , 𝑟𝑛−1,𝑛, 𝑖𝑛, 𝑟𝑛,𝑛+1,⋯ , 𝑟𝑛,𝑁 ) =
F𝑡+1𝑛 (𝑖𝑛, 𝑟1,𝑛 ⋯ 𝑟𝑛−1,𝑛𝑟𝑛,𝑛+1 ⋯ 𝑟𝑛,𝑁 );

8:  end for
9:  Check convergence criteria:

‖ − revFCTN({ 𝑡+1
𝑛 }𝑁𝑛=1)‖𝐹 ∕‖‖𝐹 < 10−5;

10: end while

Definition 4 (revealFCTN Decomposition). The revealFCTN decompo-
sition of an 𝑁th-order tensor  is defined as 
 = 1 ×

𝐧2
𝐦2

2 ×
𝐧3
𝐦3

3 ⋯ ×𝐧𝑛
𝐦𝑛

𝑛 ⋯ ×𝐧𝑁
𝐦𝑁

𝑁 , (9)

where 𝑛 ∈ R𝑅1,𝑛×⋯×𝑅𝑛−1,𝑛×𝐼𝑛×𝑅𝑛,𝑛+1×⋯×𝑅𝑛,𝑁 , 𝑅𝑛1 ,𝑛2  is the revealed FCTN 
rank, 𝐦𝑛 =

(

2, (𝑁 − (𝑛 − 1)) ∗ 1 + 2,… , (𝑁 − (𝑛 − 1)) ∗ (𝑛 − 2) + 2
)

, 
𝐧𝑛 = (1, 2,… , 𝑛 − 1), and ×𝐧

𝐦 denotes the tensor contraction.
We detail the tensor contraction operator. Given an 𝑀th-order 

tensor  ∈ R𝐼1×𝐼2×⋯×𝐼𝑀  and an 𝑁th-order tensor  ∈ R𝐽1×𝐽2×⋯×𝐽𝑁

with 𝑑 common modes. Assume that two vectors 𝒎 = (𝑚1, 𝑚2,… , 𝑚𝑀 )
and 𝒏 = (𝑛1, 𝑛2,… , 𝑛𝑁 ) respectively indicate the rearrangement of 
vectors (1, 2,… ,𝑀) and (1, 2,… , 𝑁), satisfying 𝐼 = 𝐽  for 𝑙 =
5

𝑚𝑙 𝑛𝑙
1, 2,… , 𝑑, 𝑚𝑑+1 < 𝑚𝑑+2 < ⋯ < 𝑚𝑀 , and 𝑛𝑑+1 < 𝑛𝑑+2 < ⋯ < 𝑛𝑁 , 
then the tensor contraction between  and  can be computed by 
the following four steps: (i) Transpose  and  respectively in the 
orders (𝑚𝑑+1,… , 𝑚𝑀 , 𝑚1,… , 𝑚𝑑 ) and (𝑛1,… , 𝑛𝑑 , 𝑛𝑑+1,… , 𝑛𝑁 ); (ii) Re-
shape the transposed tensors into matrices 𝐘 ∈ R

∏𝑀
𝑙=𝑑+1 𝐼𝑚𝑙×

∏𝑑
𝑙=1 𝐼𝑚𝑙  and

𝐙 ∈ R
∏𝑑

𝑙=1 𝐽𝑛𝑙×
∏𝑁

𝑙=𝑑+1 𝐽𝑛𝑙 ; (iii) Compute matrix multiplication 𝐗 =
𝐘𝐙; (iv) Reshape 𝐗 into a (𝑀 + 𝑁 − 2𝑑)th-order tensor  ∈
R𝐼𝑚𝑑+1×⋯×𝐼𝑚𝑀 ×𝐽𝑛𝑑+1×⋯×𝐽𝑛𝑁 . For brevity, the tensor contraction between 
 and  is compactly denoted as  =  ×𝑛1 ,…,𝑛𝑑

𝑚1 ,…,𝑚𝑑
.

For simplicity, we use  = revFCTN({𝑛}𝑁𝑛=1) to compactly represent 
the above revealFCTN decomposition. Furthermore, the factors of the 
revealFCTN decomposition can be obtained by Algorithm 2.

2.4. The revealFCTN decomposition-based TC model

To evaluate the potential of the proposed revealFCTN decomposi-
tion, we test it on a representative application, i.e., tensor completion 
(TC). TC aims to reconstruct the data from partial observations. Let 
 ∈ R𝐼1×𝐼2×⋯×𝐼𝑁  represent the observed data from the original data 
 ∈ R𝐼1×𝐼2×⋯×𝐼𝑁  and 𝛺 denote the set of indexes of the observed 
entries. The revealFCTN decomposition-based TC model (revealFCTN) 
is formulated as 
min
 ,𝑛

𝓁𝛺() + 1
2
‖ − revFCTN({𝑛}𝑁𝑛=1)‖

2
𝐹 , (10)

where 

𝓁𝛺() ∶=

{

0, 𝛺 = 𝛺 ,
∞, otherwise.

(11)

2.5. The solving algorithm for the proposed model

We solve the nonsmooth and nonconvex problem (10) by applying 
the PAM algorithm [34], which iteratively updates one variable while 
the others are fixed, and then repeats this procedure until some conver-
gence criterion is satisfied. Based on the PAM algorithm, each variable 
in the optimization problem (10) is updated alternately as follows:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

 𝑡+1
𝑛 ∈ argmin

𝑛

1
2
‖

‖

‖

 𝑡 − revFCTN
(

{ 𝑡+1
𝑘 }𝑛−1𝑘=1,𝑛, { 𝑡

𝑘}
𝑁
𝑘=𝑛+1

)

‖

‖

‖

2

𝐹

+ 𝜌
2‖𝑛 −  𝑡

𝑛‖
2
𝐹 , 𝑛 = 1, 2,… , 𝑁,

 𝑡+1 ∈ argmin


𝓁𝛺() + 1
2‖ − revFCTN({ 𝑡+1

𝑛 }𝑁𝑛=1)‖
2
𝐹

+ 𝜌
2‖ −  𝑡

‖

2
𝐹 ,

where 𝜌 and 𝑡 are the positive proximal parameter and the itera-
tion index, respectively. The solution to each subproblem is presented 
below.

Update 𝑛: The 𝑛 (𝑛 = 1, 2,… , 𝑁)-subproblems at the 𝑡th iteration 
are 
 𝑡+1
𝑛 = argmin

𝑛

1
2
‖𝐗𝑡

⟨𝑛⟩ − 𝐅𝑛𝐅𝑡
[𝑁]∕𝑛‖

2
𝐹 +

𝜌
2
‖𝐅𝑛 − 𝐅𝑡

𝑛‖
2
𝐹 , (12)

where  𝑡
[𝑁]∕𝑛 is obtained by tensor contraction of { 𝑡+1

𝑘 }𝑛−1𝑘=1 and
{ 𝑡

𝑘}
𝑁
𝑘=𝑛+1, and 𝐅𝑡

[𝑁]∕𝑛 is the unfolding matrix of  𝑡
[𝑁]∕𝑛 with size in Table 

1. The problem (12) can be directly solved as 
𝐅𝑡+1
𝑛 = [𝐗𝑡

⟨𝑛⟩(𝐅
𝑡
[𝑁]∕𝑛)

T + 𝜌𝐅𝑡
𝑛][𝐅

𝑡
[𝑁]∕𝑛(𝐅

𝑡
[𝑁]∕𝑛)

T + 𝜌𝐈]−1, (13)

and  𝑡+1
𝑛  is the corresponding tensor of 𝐅𝑡+1

𝑛  satisfying
 𝑡+1
𝑛 (𝑟1,𝑛,… , 𝑟𝑛−1,𝑛, 𝑖𝑛, 𝑟𝑛,𝑛+1,… , 𝑟𝑛,𝑁 ) = 𝐅𝑡+1

𝑛 (𝑖𝑛, 𝑟1,𝑛 ⋯ 𝑟𝑛−1,𝑛𝑟𝑛,𝑛+1 ⋯ 𝑟𝑛,𝑁 ).

Update  : The -subproblem at the 𝑡th iteration is 

 𝑡+1 = argmin


𝓁𝛺() +
1 + 𝜌
2

‖

‖

‖

 −
revFCTN({ 𝑡+1

𝑛 }𝑁𝑛=1) + 𝜌 𝑡

1 + 𝜌
‖

‖

‖

2

𝐹
, (14)

which has the following closed-form solution 

 𝑡+1 = 𝛺 +

(

revFCTN({ 𝑡+1
𝑛 }𝑁𝑛=1) + 𝜌 𝑡

1 + 𝜌

)

, (15)

𝛺𝐶
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Table 2
Summary of all compared methods.
 Algorithm Tensor decomposition type Is tensor rank adaptive? Number of tunable parameters  
 HaLRTC Tucker – –  
 TFTC T-SVD 7 1  
 TT TT 7 𝑵 − 𝟏  
 TR TR 7 𝑵  
 FCTN FCTN 7 𝑵(𝑵 − 𝟏)∕𝟐  
 greedyFCTN FCTN 3 Numerous searches and evaluations (greedy) 
 revealFCTN FCTN 3 1 (constructive)  
Algorithm 3 : PAM-based algorithm for revealFCTN.
Input: Observed data  ∈ R𝐼1×𝐼2×⋯×𝐼𝑁 , set 𝛺, threshold parameter 𝛿, 
proximal parameter 𝜌, and maximum iteration number 𝑡max.
1: Initialize 𝑡 = 0 and 0, estimate the FCTN rank of 0 by Algorithm 
1, and draw factors 0

𝑛 (𝑛 = 1, 2,⋯ , 𝑁) sampled from a uniform 
distribution with the estimated FCTN rank;

2: while not converged and 𝑡 < 𝑡max do
3:  Update  𝑡+1

𝑛  via (13);
4:  Update  𝑡+1 via (15);
5:  if mod1(𝑡+1,400) = 0 then
6:  Update FCTN rank of  𝑡+1 by Algorithm 1;
7:  Adjust factors  𝑡+1

𝑛 (𝑛 = 1, 2,⋯ , 𝑁) according to the new 
estimated FCTN rank;

8:  end if
9:  Check convergence criteria:

‖ 𝑡+1 −  𝑡
‖𝐹 ∕‖ 𝑡

‖𝐹 < 10−5;

10: end while
Output: The final FCTN rank and reconstructed result  ∈
R𝐼1×𝐼2×⋯×𝐼𝑁 .

where 𝛺𝐶 denotes the complementary set of 𝛺.
The PAM-based algorithm for solving model (10) is described in 

Algorithm 3. For Algorithm 3, we further introduce two key details:
(i) We update the FCTN rank after a certain number of iterations 

rather than at each iteration. Typically, the FCTN ranks of  𝑡 and 
 𝑡+1 remain unchanged, making frequent updates unnecessary. For 
efficiency, we update the FCTN rank every 400 steps in the subsequent 
experiments.

(ii) We adjust the factors  𝑡+1
𝑛 (𝑛 = 1, 2,… , 𝑁) by discarding more 

and compensating less after updating the FCTN rank. Taking the first 
factor 1 ∈ R𝐼1×𝑅1,2×𝑅1,3×𝑅1,4  of the fourth-order data  ∈ R𝐼1×𝐼2×𝐼3×𝐼4

as an example, we explain this process in detail. Suppose that the 
adjusted target factor is ̂1 ∈ R𝐼1×𝑅new1,2 ×𝑅new1,3 ×𝑅new1,4 , 𝑅new1,2 = 𝑅1,2 + 𝑑1, 
𝑅new1,3 = 𝑅1,3 − 𝑑2, and 𝑅new1,4 = 𝑅1,4, where 𝑑1 and 𝑑2 are two positive 
integers. To achieve it, we first augment factor 1 by incorporating 
tensor  ∈ R𝐼1×𝑑1×𝑅1,3×𝑅1,4  sampled from the uniform distribution at 
the end of the second mode, resulting in new1 ∈ R𝐼1×𝑅new1,2 ×𝑅1,3×𝑅1,4 . 
Afterwards, we remove a tensor of size 𝐼1×𝑅new1,2 ×𝑑2×𝑅1,4 from the end 
of the third mode, yielding new1 ∈ R𝐼1×𝑅new1,2 ×𝑅new1,3 ×𝑅1,4 . No adjustment 
is required for the fourth mode, and ̂1 ∈ R𝐼1×𝑅new1,2 ×𝑅new1,3 ×𝑅new1,4  is finally 
obtained.

3. Numerical experiments

To validate the effectiveness of the revealFCTN, we conduct exten-
sive numerical experiments on high-dimensional data, including third-
order multispectral images, fourth-order color videos, and fifth-order 
light field images.

1 Modulo operation.
6

Parameter settings. We compare the proposed method with six com-
pletion methods, including HaLRTC [35], TFTC [36], TT [16], and 
TR [20], FCTN [23], and greedyFCTN [29], which are summarized in 
Table  2. To eliminate the influence of the solved algorithm, the TFTC, 
TT, TR, FCTN, and revealFCTN models are all solved using the PAM al-
gorithm. The algorithm parameters are set as follows: proximal parame-
ter 𝜌 = 0.1, maximum iteration number 𝑡max = 1000, and stopping crite-
ria ‖ 𝑡+1− 𝑡

‖𝐹 ∕‖ 𝑡
‖𝐹 ≤ 10−5. In addition, the parameter of HaLRTC is 

set to 𝛼∕‖𝛼‖1, where 𝛼 is a vector of length 𝑁 with all elements equal to 
1. The parameters of TFTC, TT, TR, and FCTN are tubal rank (i.e., 𝑅Tub), 
TT rank (i.e., (𝑅TT

1 , 𝑅TT
2 ,… , 𝑅TT

𝑁−1)), TR rank (i.e., (𝑅TR
1 , 𝑅TR

2 ,… , 𝑅TR
𝑁 )), 

and FCTN rank (i.e., (𝑅FCTN
1,2 , 𝑅FCTN

1,3 ,… , 𝑅FCTN
1,𝑁 , 𝑅FCTN

2,3 ,… , 𝑅FCTN
2,𝑁 ,… ,

𝑅FCTN
𝑁−1,𝑁 )), respectively, which are adjusted manually to achieve the 

best performance. For revealFCTN, we initialize 0 with the recovered 
result of TFTC to obtain a better initial FCTN rank.

Evaluation metrics. For numerical experiments, the mean peak signal-
to-noise ratio (MPSNR), the mean structural similarity (MSSIM) [37], 
and total computational time (includes the time required to tune all 
parameters) are selected as quality metrics.

All experiments are implemented in MATLAB (R2019a) on a com-
puter with 64Gb RAM and Intel(R) Core(TM) i9-10900KF CPU:
@3.60 GHz.

3.1. Third-order multispectral images

In this subsection, we conduct experiments on third-order data. 
Specifically, three multispectral images1 (i.e., Toy, Stuffed toys, and
Flowers) of size 256 × 256 × 31 (i.e., 31 bands of size 256 × 256), 
are chosen as test data. For each image, we test three sampling rates 
(SRs): 1%, 5%, and 10%.

Table  3 reports the MPSNR/MSSIM values and the total times 
(seconds) of the multispectral images recovered by different methods 
under different SRs. For third-order data, the FCTN decomposition 
is essentially the TR decomposition, thus their performance is the 
same. As observed, the proposed revealFCTN achieves superior results 
compared to manually constructed TN decompositions in a similar or 
even less time, while achieving comparable results to that obtained by 
greedyFCTN in a much less time, approximately a 5-15× speed-up.

For better visual comparison, we display the pseudo-color images 
(composed of the 31st, 20th, and 10th bands) of the restructured 
multispectral images by different methods at different SRs in Fig.  4. 
Moreover, we present the enlarged image of the same subregion of each 
multispectral image in a green box, with the corresponding residual 
image in a red box. Obviously, the proposed revealFCTN can not only 
recover the global structure, but also better preserve the local details, 
such as the notation in Toy, the eyes in Stuffed toys, and the texture 
in Flowers. As observed, our revealFCTN achieves better results than 
FCTN. This improvement is because our method can flexibly estimate 
an appropriate FCTN rank for the data at each stage (see more details 
in the discussion).

1 Available at http://www.cs.columbia.edu/CAVE/databases/
multispectral/.

http://www.cs.columbia.edu/CAVE/databases/multispectral/
http://www.cs.columbia.edu/CAVE/databases/multispectral/
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Table 3
Quality metrics and total times (seconds) of various methods at different SRs on third-order multispectral images.
 Data Method SR = 1% SR = 5% SR = 10%

 MPSNR MSSIM Total time MPSNR MSSIM Total time MPSNR MSSIM Total time 
 

Toy

Observed 10.452 0.2119 – 10.629 0.2425 – 10.865 0.2786 –  
 HaLRTC 11.022 0.2889 30 20.197 0.7384 31 28.322 0.8790 33  
 TFTC 15.657 0.5316 108 28.758 0.8520 173 33.326 0.9315 326  
 TT 20.752 0.5635 361 28.303 0.7786 554 32.109 0.8851 716  
 TR 20.260 0.5356 882 30.119 0.8315 1703 35.729 0.9368 3411  
 FCTN 20.260 0.5356 882 30.119 0.8315 1703 35.729 0.9368 3411  
 greedyFCTN 21.706 0.5815 473 31.634 0.8789 1199 37.654 0.9587 2659  
 revealFCTN 21.052 0.5765 98 31.129 0.8679 152 37.168 0.9504 202  
 

Stuffed toys

Observed 12.048 0.2189 – 12.226 0.2485 – 12.460 0.2824 –  
 HaLRTC 12.503 0.2884 32 16.892 0.6501 33 24.105 0.8201 35  
 TFTC 16.425 0.4561 119 28.059 0.8099 187 33.224 0.9174 369  
 TT 18.772 0.4628 405 28.352 0.7663 573 32.204 0.8749 778  
 TR 18.722 0.4091 917 29.965 0.7874 1948 35.568 0.9151 3935  
 FCTN 18.722 0.4091 917 29.965 0.7874 1948 35.568 0.9151 3935  
 greedyFCTN 19.556 0.4373 525 31.962 0.8585 1383 37.705 0.9523 3225  
 revealFCTN 18.772 0.4628 112 31.557 0.8500 193 37.281 0.9436 245  
 

Flowers

Observed 13.365 0.3032 – 13.543 0.3298 – 13.779 0.3611 –  
 HaLRTC 13.854 0.3736 29 18.168 0.6505 31 23.883 0.7779 32  
 TFTC 18.126 0.4863 102 27.334 0.7527 158 31.634 0.8709 295  
 TT 21.106 0.4997 323 27.221 0.6612 464 31.409 0.8145 659  
 TR 20.581 0.4589 816 29.391 0.7367 1636 34.230 0.8788 3548  
 FCTN 20.581 0.4589 816 29.391 0.7367 1636 34.230 0.8788 3548  
 greedyFCTN 22.201 0.4888 451 30.412 0.7762 1120 35.551 0.9072 2847  
 revealFCTN 21.408 0.5216 92 30.010 0.7721 139 35.015 0.9001 189  
Fig. 4. Recovered results on third-order multispectral images using different methods (Green box: enlarged image; red box: corresponding residual image). From top to bottom, 
the sampling rates are 1%, 5%, and 10%, respectively.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Comparison of quality metrics and total times of different methods on the fourth-order color video Grandma with SR = 5%.  (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)
7
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Table 4
Quality metrics and total times (seconds) of various methods at different SRs on fourth-order color videos.
 Data Method SR = 1% SR = 5% SR = 10%

 MPSNR MSSIM Total time MPSNR MSSIM Total time MPSNR MSSIM Total time 
 

Grandma

Observed 11.666 0.0147 – 11.846 0.0350 – 12.082 0.0550 –  
 HaLRTC 12.438 0.0924 40 28.870 0.8614 43 33.686 0.9315 54  
 TFTC 22.623 0.5735 369 31.198 0.8707 664 34.353 0.9267 875  
 TT 26.104 0.6552 3209 32.787 0.8825 7946 36.879 0.9513 10168  
 TR 24.637 0.5763 5024 34.128 0.9101 16353 37.283 0.9514 24082  
 FCTN 25.662 0.6470 7326 34.296 0.9150 37991 37.424 0.9532 48326  
 greedyFCTN 28.655 0.7312 4719 35.289 0.9303 15660 37.931 0.9587 21266  
 revealFCTN 27.890 0.7190 428 34.962 0.9267 776 37.740 0.9571 992  
 

Container

Observed 4.421 0.0020 – 4.600 0.0067 – 4.835 0.0113 –  
 HaLRTC 5.077 0.0270 35 19.054 0.6336 37 28.912 0.9125 51  
 TFTC 11.437 0.2133 351 29.588 0.9074 636 33.686 0.9490 771  
 TT 21.241 0.6373 2953 28.221 0.8795 7572 31.623 0.9122 9587  
 TR 20.858 0.6185 4745 30.314 0.8988 14069 34.759 0.9523 21038  
 FCTN 21.017 0.6249 6958 30.762 0.9098 33679 35.215 0.9538 41390  
 greedyFCTN 22.716 0.7254 4495 31.935 0.9192 14544 35.921 0.9595 19815  
 revealFCTN 22.047 0.7105 391 31.691 0.9138 725 35.778 0.9575 956  
 

Hall

Observed 5.563 0.0027 – 5.742 0.0093 – 5.977 0.0162 –  
 HaLRTC 6.232 0.0349 37 19.008 0.6539 41 27.634 0.8887 55  
 TFTC 12.823 0.2739 360 28.885 0.8882 653 31.692 0.9292 818  
 TT 21.495 0.6093 3099 27.231 0.8488 7832 30.489 0.9006 9741  
 TR 20.723 0.5652 4874 30.210 0.8826 15561 32.379 0.9241 23982  
 FCTN 21.078 0.5937 7140 30.451 0.8954 34679 32.840 0.9318 44517  
 greedyFCTN 23.409 0.6761 4638 31.403 0.9130 14901 33.732 0.9410 20149  
 revealFCTN 22.762 0.6616 414 31.040 0.9005 759 33.551 0.9373 971  
Fig. 6. Recovered results on fourth-order color videos using different methods (Green box: enlarged image; red box: corresponding residual image). From top to bottom, the 
sampling rates are 1%, 5%, and 10%, respectively.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
3.2. Fourth-order color videos

In this subsection, we perform experiments on fourth-order data. 
Specifically, three color videos2 (i.e., Grandma, Container, and hall) of 
size 144 × 176 × 3 × 50 (i.e., the first 50 frames of video sequences with 
each frame of size 144 × 176 × 3), are chosen as test data. For each 
video, we test three SRs: 1%, 5%, and 10%.

Table  4 lists the MPSNR/MSSIM values and the total times (seconds) 
for color videos recovered by different methods under different SRs. For 
a clearer comparison, we illustrate the comparison of quality metrics 
and total times of different methods on the color video Grandma with 
SR = 5% in Fig.  5. The experimental results demonstrate the superiority 
of the proposed revealFCTN. In most cases, our method achieves around 
1 dB gain in the MPSNR compared to the best-performing constructed 
TN decomposition, while achieving similar results to that obtained 
by greedyFCTN in significantly less time, approximately a 10–18×
speed-up.

2 Available at https://media.xiph.org/video/derf/.
8

To visually compare the performance of all recovered results, we 
show one frame of the restructured color videos by different methods 
under different SRs in Fig.  6. Moreover, we present the enlarged image 
of the same subregion of each color video in a green box and the 
corresponding residual image in a red box. From Fig.  6, we observe that 
our method is promising in recovering the details of moving people or 
objects in the color videos, especially their brightness and outlines.

3.3. Fifth-order light field image

In this subsection, we undertake experiments on a more challenging 
case, i.e., fifth-order data. Specifically, we consider a light field image3 
(i.e., Lego Truck) comprising various views arranged on a 17 × 17 grid. 
A sub-image of size 108 × 162 × 3 × 15 × 4 is used as test data. For this 
data, we test six SRs: 1%, 5%, 10%, 20%, 30%, and 40%. Here, we 
did not conduct experiments with FCTN and revealFCTN due to their 
prohibitive computational costs. Specifically, FCTN requires adjusting 

3 Available at http://lightfield.stanford.edu/lfs.html.

https://media.xiph.org/video/derf/
http://lightfield.stanford.edu/lfs.html
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Table 5
Quality metrics and total times (seconds) of various methods at different SRs on fifth-order light field image.
 SR Observed HaLRTC TFTC TT TR revealFCTN

MPSNR MSSIM MPSNR MSSIM MPSNR MSSIM MPSNR MSSIM MPSNR MSSIM MPSNR MSSIM 
1% 13.430 0.0558 13.471 0.0613 20.424 0.5217 20.627 0.4740 20.788 0.4672 21.231 0.5216  
5% 13.611 0.0866 14.065 0.1414 23.664 0.6808 23.183 0.6643 24.244 0.6989 24.016 0.7134 
10% 13.846 0.1228 15.206 0.3578 25.634 0.7685 24.467 0.7359 26.343 0.7818 26.878 0.7875 
20% 14.360 0.1939 22.343 0.7013 28.737 0.8624 25.643 0.7943 30.194 0.8793 30.900 0.8853 
30% 14.935 0.2632 24.517 0.7957 31.386 0.9135 28.060 0.8764 32.454 0.9187 32.694 0.9257 
40% 15.602 0.3312 26.461 0.8609 33.881 0.9447 29.432 0.9094 33.914 0.9489 35.422 0.9514 
Total time – 70 943 8938 26938 2502
ig. 7. Recovered results on fifth-order light field image using different methods (Green box: enlarged image; red box: corresponding residual image). From top to bottom, the 
ampling rates are 20% and 40%, respectively.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. The statistics of MPSNR/MSSIM values for the third-order CAVE dataset at different SRs.
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en rank parameters, and employing greedyFCTN to search for such a 
arge number of rank parameters is also computationally expensive.
Table  5 presents the MPSNR/MSSIM values and the total times 

seconds) of the light field image recovered by different methods under 
ifferent SRs. For this more challenging fifth-order data, the numbers 
f tunable parameters of similar types methods (i.e., TT and TR) are 4 
nd 5, respectively. As observed, the proposed method still outperforms 
he compared ones in terms of both MPSNR and MSSIM values with 
ignificantly less time.
Fig.  7 illustrates the restructured light field image by different 
ethods with SR = 20% and SR = 40%. Moreover, we provide the 
nlarged image of the same subregion of each recovered result in a 
reen box and the corresponding residual image in a red box. From 
he enlarged subregions, particularly the residual images in the red 
ox, we observe that the proposed method achieves a more accurate 
pproximation to the original image.
9

t

. Discussion

(1) Statistical significance. To assess the statistical significance, we 
valuate these methods on the CAVE dataset, which includes 32 multi-
pectral images. In Fig.  8, we report the statistics (mean and standard 
eviation) of MPSNR and MSSIM values at different SRs. The results 
how that our method consistently outperforms the compared methods 
t various SRs.
(2) revealFCTN vs. FCTN: As shown in Table  3 and Table  4, our 
ethod achieves promising results with a 10-50× speed-up compared 
o FCTN. For third-order and fourth-order data, FCTN requires tuning 
hree and six parameters (i.e., FCTN rank) respectively, while our 
ethod only involves a single threshold parameter. Therefore, the total 
ime required for tuning parameters with our method is significantly 
ower than that of FCTN. To explore why our method performs better 
han FCTN, we present the recovered results at different iterations and 
he corresponding FCTN rank of FCTN and revealFCTN in Fig.  9. We 
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Fig. 9. The recovered results at different iterations and the corresponding FCTN rank of FCTN (the first row) and revealFCTN (the second row) for Toy with SR = 10%, respectively.
Fig. 10. The MPSNR curves of the recovered results by revealFCTN with respect to the threshold parameter 𝛿 on multispectral images under different SRs. (a) SR = 1%. (b) SR 
= 5%. (c) SR = 10%.
observe that our method can flexibly determine an appropriate FCTN 
rank for the data at each stage. Specifically, the FCTN rank calculated 
by Algorithm 1 for the initial data is relatively small. The revealFCTN 
can rapidly capture the rough structural information of the original 
tensor when the FCTN rank is small. As the image is recovered more 
accurately, the corresponding FCTN rank computed by Algorithm 1 
increases. With the increasing FCTN rank, the proposed revealFCTN can 
gradually reconstruct local details. Thus, revealFCTN can achieve better 
recovery results than FCTN.

(3) Influence of threshold parameter 𝛿: The threshold parameter 𝛿 in 
revealFCTN controls the size of the FCTN rank. Using the multispectral 
images as an example, we illustrate the influence of the threshold 
parameter 𝛿 on the recovered results in Fig.  10. As observed, the 
revealFCTN achieves optimal performance with a suitable threshold 
parameter. Generally speaking, as the SR increases, the appropriate 
threshold parameter becomes smaller, indicating that the FCTN rank 
becomes larger.

(4) Extension to other tensor applications. We extend the proposed 
method to additional tensor applications, including traffic speed data 
inpainting and remote sensing image cloud removal.
10
Traffic speed data inpainting. We evaluate our method on an 
urban traffic speed dataset4 consisting of 214 road segments within two 
months at 10-min intervals, forming a tensor of size 214 × 61 × 144. 
The data is normalized to [0,1]. Due to power outages and damaged 
road sensors, the dataset naturally exhibits tube-wise missing problems, 
with an original missing rate of 1.3% (visible as blue strips in Fig.  11). 
To further test our method, we introduced synthetic tube-wise missing 
data along the third mode, increasing the missing rate to 70%. Fig. 
11 presents the 90th frontal slices of the reconstructed traffic speed 
data using different methods. The results obtained by the proposed 
revealFCTN are closer to the original data than the compared methods.

Remote sensing image cloud removal. We also test our method on 
two time-series Sentinel-2 image datasets: Morocco5 and Brazil5. These 
datasets are resized to 200 × 200 × 4 × 6. The cloud mask is designed 
as: 1) at different time nodes, clouds are located at different locations 
and 2) at the same time node, clouds are positioned identically across 
all spectral bands. Fig.  12 illustrates the pseudo images of the cloud 

4 https://doi.org/10.5281/zenodo.1205229.
5 https://earthexplorer.usgs.gov/.

https://doi.org/10.5281/zenodo.1205229
https://earthexplorer.usgs.gov/
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Fig. 11. The 90th frontal slice of the recovered traffic speed data using different methods.  (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)
Fig. 12. The fourth and fifth time nodes of cloud removal results over Morocco (the first row) and Brazil (the second row) using different methods, respectively.
removal results for Morocco (the first row) and Brazil (the second 
row) at the fourth and fifth time nodes, respectively. As observed, 
the results obtained by HaLRTC contain artifacts, while the results 
obtained by TFTC, TT, TR, and FCTN are over-smoothed and lose 
local details. In contrast, revealFCTN delivers superior visual results, 
effectively recovering global structures and preserving local details, 
especially see the lines and details in the marked boxes.

These experimental results highlight the potential and versatility of 
the proposed revealFCTN method in effectively addressing real-world 
applications.

5. Conclusions

This paper suggested a novel revealFCTN decomposition, which can 
efficiently and adaptively determine a suitable FCTN rank for any given 
data by sufficiently exploiting its correlations. Afterwards, we verify its 
potential on TC task. We designed a TC model based on the proposed 
revealFCTN decomposition and utilized a PAM-based algorithm to solve 
it. Extensive experiments on real data (including third-order, fourth-
order, and fifth-order data) substantiated that our method achieves 
superior results compared to manually constructed TN decompositions 
in a similar time, while achieving comparable results to that obtained 
by greedyFCTN in significantly less time.

Adaptation to other types of data. Our method can be applied to 
general tensors, which represent various multidimensional data, such 
11
as videos, remote sensing images, traffic flow data. The proposed re-
vealFCTN adaptively estimates the FCTN rank, requiring only the ranks 
of single-mode and double-mode unfolding matrices (Definitions  2 and
3) of the data, and then constructs the revealFCTN decomposition. This 
adaptability makes it practical for handling various real-world data.

Limitations and future directions. Although the proposed method does 
not require any search and evaluation process as the greedy algorithm, 
estimating the FCTN rank needs to utilize the ranks of unfolding 
matrices, which still introduces computational costs. To alleviate this 
problem, random algorithms [38,39] could be employed to quickly 
estimate the ranks of the unfolding matrices, thereby further reducing 
computational costs. Moreover, this paper focuses on handling noise-
free data. Noise (e.g., Gaussian or sparse noise) can affect the accuracy 
of the estimated rank. In future work, we will explore robust rank 
estimation methods for noisy cases, enhancing the practicality of the 
proposed method.
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