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Abstract. Motivated by the success of fully-connected tensor network (FCTN)

decomposition, we suggest two FCTN-based models for the robust tensor com-
pletion (RTC) problem. Firstly, we propose an FCTN-based robust nonconvex

optimization model (RNC-FCTN) directly based on FCTN decomposition for
the RTC problem. Then, a proximal alternating minimization (PAM)-based

algorithm is developed to solve the proposed RNC-FCTN. Meanwhile, we the-

oretically derive the convergence of the PAM-based algorithm. Although the
nonconvex model has shown empirically excellent results, the exact recovery

guarantee is still missing and N(N−1)/2+1 tuning parameters are difficult to

choose for N -th order tensor. Therefore, we propose the FCTN nuclear norm
as the convex surrogate function of the FCTN rank and suggest an FCTN nu-

clear norm-based robust convex optimization model (RC-FCTN) for the RTC

problem. For solving the constrained optimization model RC-FCTN, we de-
velop an alternating direction method of multipliers (ADMM)-based algorithm,

which enjoys the global convergence guarantee. To explore the exact recovery

guarantee, we design a constructive singular value decomposition (SVD)-based
FCTN decomposition, which is another crucial algorithm to obtain the factor

tensors of FCTN decomposition. Accordingly, we rigorously establish the ex-
act recovery guarantee for the RC-FCTN and suggest the theoretical optimal

value for the only one parameter in the convex model. Comprehensive numer-

ical experiments in several applications, such as video completion and video
background subtraction, demonstrate that the suggested convex and noncon-

vex models have achieved state-of-the-art performance.

1. Introduction. Owing to various unpredictable or unavoidable reasons, the ob-
served data is often contaminated by noise and suffers from missing information
[39, 20, 32, 18], which significantly limits the accuracy of subsequent applications.
The data recovery problems, such as image/video completion [42, 9, 10, 28] and
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image/video noise removal [37, 8, 40, 24], are very significant. As the general-
ization of matrices, tensors can represent higher-dimensional data, most of which
is assumed to be low-rank in the recovery problems[27, 31, 21, 36]. As a typical
ill-posed inverse problem, this data recovery problems are modeled as a robust ten-
sor completion (RTC) problem, aiming to restructure a low-rank component and a
sparse component from the observed data.

Mathematically, the RTC problem can be expressed as:

min
X ,E

l(X ) + λ‖E‖1, s.t. PΩ(X + E) = PΩ(O), (1)

where O is the observed data, X and E are the low-rank component and the sparse
component, l(X ) is the regularization term, λ is regularization parameter, and PΩ

is a projection that the entries in the set Ω are themselves while the other entries
are set to zeros. When Ω is the whole set, (1) transforms into sparse noise removal
problem. When λ = 0, (1) transforms into tensor completion problem.

High-dimensional images are usually globally correlated since they contain plenty
of highly similar information. Mathematically, we use the low-rankness to charac-
terize the global correlation. Unlike the matrix case, there exist different kinds
of tensor rank, such as Tucker rank [26], multi-rank and tubal rank [16], tensor
train (TT) rank [22], and tensor ring (TR) rank [41], which are derived from the
corresponding tensor decompositions. In general, the minimization of tensor rank
is NP-hard [12], the convex/nonconvex relaxation of tensor rank or the low-rank
tensor decomposition is usually used instead of the minimization of tensor rank.

Tucker decomposition decomposes an Nth-order tensor X ∈ RI1×I2×···×IN into
a small-sized Nth-order core tensor G multiplied by a matrix along each mode, i.e.,
X = G×1U1×2U2×3 · · ·×NUN . Tucker rank is a vector whose the kth entry is the
rank of the mode-k matricization of X , i.e., rankTu(X ) := (rank(X(1)), rank(X(2)),

· · · , rank(X(N))), where X(k) ∈ RIk×(I1···Ik−1Ik+1···IN ) is the mode-k matricization
of X . Based on recent studies that the nuclear norm (‖·‖∗) was the convex relaxation
of the matrix rank, Liu et al . [19] proposed the sum of nuclear norms (SNN) of all

unfolding matrices
∑N
k=1 αk‖X(k)‖∗ as the convex surrogate of tensor Tucker rank,

where αk ≥ 0 and
∑N
k=1 αk = 1. Based on the SNN, Huang et al . [13] studied the

robust low-Tucker-rank tensor completion problem, i.e.,

min
X ,E

N∑
k=1

αk‖X(k)‖∗ + λ‖E‖1, s.t. PΩ(X + E) = PΩ(O), (2)

and gave the theoretical guarantee of exact recovery under tensor certain incoher-
ence conditions. The framework of the SNN-based model is easier to calculate.
However, the SNN is not the tightest convex envelope of the sum of ranks of un-
folding matrices of a tensor. Moreover, unfolding a tensor into matrices along one
mode is an unbalanced matricization scheme. Therefore, Tucker rank cannot suit-
ably capture the global information of the tensor.

Tensor singular value decomposition (t-SVD) [17] decomposes a third-order ten-
sor X ∈ RI1×I2×I3 into the tensor-product (∗) of two orthogonal tensors U , V and
an f-diagonal tensor S, i.e., X = U ∗S ∗VT. Tensor multi-rank [16] is a vector whose

entries are the rank of the frontal slice of X̂ , rankmul(X ) := (rank(X̂
(1)

), rank(X̂
(2)

),

· · · , rank(X̂
(I3)

)), where X̂ = fft(X , [], 3) denotes the tensor obtained by perform-

ing one-dimensional Fourier transform on each tube of X , and X̂
(k)

denotes the
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Figure 1. The illustration of tensor network decomposition.

kth frontal slice of X̂ . Tensor tubal rank [16] is the largest element of the ten-
sor multi-rank. Semerci et al . [23] developed the tensor nuclear norm (TNN)∑I3
k=1 ‖X̂

(k)
‖∗/I3 as the convex envelope of l1 norm of the multi-rank. Utilizing

the TNN, Jiang et al . [15] studied the RTC problem, i.e.,

min
X ,E

1

I3

I3∑
k=1

‖X̂
(k)
‖∗ + λ‖E‖1, s.t. PΩ(X + E) = PΩ(O), (3)

and provided the theoretical guarantee for the exact recovery. Recently, Song et al .
[25] generalized the t-SVD theory via multiplying by a unity matrix on all tubes
instead of the fixed discrete Fourier transform matrix. A data-driven RTC model
is also proposed, which has been shown to have obvious advantages in processing
third-order tensors. However, the t-SVD focuses on third-order tensors. For high-
order data, such as color videos and multi-temporal remote sensing images, the
t-SVD and the corresponding TNN-based models may not effectively capture the
low-dimensional structure of data.

Recently, TT and TR decompositions have emergend as powerful tools for deal-
ing with higher-order tensors. TT decomposition (as shown in Fig. 1 (a)) [22]
decomposes an Nth-order tensor X ∈ RI1×I2×···×IN into two matrices and N − 2
third-order tensors, and the element-wise form is expressed as X (i1, i2, · · · , iN ) =∑R1

r1=1

∑R2

r2=1 · · ·
∑RN−1

rN−1=1{G1(i1, r1)G2(r1, i2, r2) · · ·GN (rN−1, iN )}. And TT rank

is defined as an (N − 1)-dimensional vector (R1, R2, · · · , RN−1). I. V. Oseledets
[22] proved that there existed a TT decomposition such that Rk ≤ rank(X[k]), k =

1, 2, · · · , N − 1, where X[k] ∈ RΠk
n=1In×ΠN

n=k+1In is the k-mode matricization of X .

In [2], TT nuclear norm (TTNN)
∑N−1
k=1 αk‖X[k]‖∗ was proposed to use as a con-

vex surrogate of TT rank for more convenient calculation and applied to low-rank
tensor completion problem. Equiped with the TTNN, Chen et al . [9] studied the
RTC problem, i.e.,

min
X ,E

N−1∑
k=1

αk‖X[k]‖∗ + λ‖E‖1, s.t. PΩ(X + E) = PΩ(O). (4)
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As an improvement of Tucker rank, TT rank help us to study the correlation be-
tween the first k modes (rather than one mode) and the rest modes. However, in real
applications, the performance of TT decomposition is highly dependent on the per-
mutations of the tensor dimensions. TR decomposition [41] (as shown in Fig. 1 (b))
decomposes an Nth-order tensor X ∈ RI1×I2×···×IN into a circular multilinear prod-
uct of a list of third-order core tensors, and the element-wise form is expressed as
X (i1, i2, · · · , iN ) =

∑R1
r1=1

∑R2
r2=1 · · ·

∑RN
rN=1{G1(r1, i1, r2)G2(r2, i2, r3) · · · GN (rN , iN , r1)}. And

TR rank is defined as a N -dimensional vector (R1, R2, · · · , RN ). Inspired by the
connection between TR rank and the rank of circularly unfolding matrices, TR

nuclear norm minimization (TRNNM) [34]
∑N
k=1 αk‖X<k,L>‖∗ was suggested as

a convex surrogate of TR rank for low-rank tensor completion problem, where

X<k,L> ∈ RΠk+L−1
i=k Ii×Πk−1

i=k+LIi is the tensor circular unfolding matrix. Then, Huang
et al . [14] studied the TRNNM-based RTC problem, i.e.,

min
X ,E

N∑
k=1

αk‖X<k,L>‖∗ + λ‖E‖1, s.t. PΩ(X + E) = PΩ(O). (5)

TR decomposition has generalized representation abilities since it can be viewed
as the linear combination of TT decomposition. However, TR decomposition only
connects the adjacent two factors, which is highly sensitive to the order of tensor
modes.

To compensate for the limitations of the TT and TR decompositions, Zheng
et al . [44] proposed the fully-connected tensor network (FCTN) decomposition (as
shown in Fig. 1 (c)), which decomposes an Nth-order tensor X ∈ RI1×I2×···×IN
into N small-sized Nth-order tensors, and each factor interacts with the others.
Mathematically, the element-wise form is expressed as

X (i1, i2, · · · , iN ) =

R1,2∑
r1,2=1

R1,3∑
r1,3=1

· · ·
R1,N∑
r1,N=1

R2,3∑
r2,3=1

· · ·
R2,N∑
r2,N=1

· · ·
RN−1,N∑
rN−1,N=1

{G1(i1, r1,2, r1,3, · · · , r1,N )G2(r1,2, i2, r2,3, · · · , r2,N ) · · ·
Gk(r1,k, r2,k, · · · , rk−1,k, ik, rk,k+1, · · · , rk,N ) · · ·
GN (r1,N , r2,N , · · · , rN−1,N , iN )}.

(6)

FCTN rank is defined as vector (R1,2, R1,3, · · · , R1,N , R2,3, R2,4, · · · , R2,N , · · · , RN−1,N ).
Compared with other tensor decompositions, the FCTN decomposition obtains su-
perior performance on the tensor completion problem. The reason is that it can
flexibly characterize the correlation between arbitrary modes. In this paper, we
leverage the strong expression ability of FCTN into the RTC problem. The contri-
bution of this paper is threefold:

(i) To tackle the more general RTC problem, we propose an FCTN-based robust
nonconvex optimization model (RNC-FCTN) and develop a proximal alternating
minimization (PAM)-based algorithm to solve the proposed model. Moreover, we
theoretically derive the convergence of the PAM-based algorithm. Although the
nonconvex model RNC-FCTN has shown empirically excellent results, the exact
recovery guarantee is still missing and N(N−1)/2+1 tuning parameters are difficult
to choose for N -th order tensor.

(ii) To tackle the exact recovery theory and the problem of too many param-
eters, we firstly propose the FCTN nuclear norm as the convex surrogate of the
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Table 1. The notations of the unfolding matrices of tensor X ∈ RI1×I2×···×IN .

Name Form Size
The corresponding

tensor decomposition

The mode-k matricization X(k) Ik ×ΠN
i=1,i6=kIi Tucker decomposition

The kth frontal slice X(k) I1 × I2 t-SVD

The k-mode matricization X[k] Πk
i=1Ii ×ΠN

i=k+1Ii TT decomposition

The kth circularly unfolding matrice X<k,L> Πk+L−1
i=k Ii ×Πk−1

i=k+LIi TR decomposition

The generalized unfolding matrix X[n1:d;nd+1:N ] Πd
i=1Ini ×ΠN

i=d+1Ini FCTN decomposition

FCTN rank. By applying the FCTN nuclear norm to the RTC problem, we sug-
gest an FCTN nuclear norm-based robust convex optimization model (RC-FCTN).
Secondly, we utilize the alternating direction method of multipliers (ADMM)-based
algorithm to solve the proposed RC-FCTN. Finally, a constructive singular value
decomposition (SVD)-based FCTN decomposition is designed, which is another
crucial algorithm to obtain the factor tensors of FCTN decomposition. Accord-
ingly, we theoretically establish the exact recovery guarantee and derive the
theoretical optimal value of the only one parameter for RC-FCTN.

(iii) Extensive numerical experiments on several tasks, such as video comple-
tion and video background subtraction, demonstrate that the proposed convex and
nonconvex models have achieved state-of-the-art performance.

The outline of the paper is as follows. We summarize necessary preliminaries
throughout the paper in Section 2. We present the nonconvex model RNC-FCTN
for the RTC problem and theoretically derive the convergence guarantee of the
PAM-based algorithm in Section 3. We introduce the convex model RC-FCTN
for the RTC problem and establish the exact recovery guarantee of the RC-FCTN
model and the convergence guarantee of the ADMM-based algorithm in Section 4.
We report extensive numerical experiments to verify the superior performance of
the proposed methods in Section 5 and conclude this paper in Section 6.

2. Preliminaries. The material in this section mainly introduce the FCTN decom-
position, which is essentially the same as in [44]. We use x, x, X, and X to denote
scalars, vectors, matrices, and tensors, respectively. For tensor X ∈ RI1×I2×···×IN ,
we denote X (i1, i2, · · · , iN ) as its (i1, i2, · · · , iN )th element and summarize its var-
ious unfolding matrices in Table 1. The inner product of two tensors X and
Y with the same size is defined as the sum of the products of their entries, i.e.,
〈X ,Y〉 =

∑
i1,i2,··· ,iN X (i1, i2, · · · , iN )Y(i1, i2, · · · , iN ). The l1-norm and Frobe-

nius norm of X are defined as ‖X‖1 =
∑
i1,i2,··· ,iN |X (i1, i2, · · · , iN )| and ‖X‖F =√∑

i1,i2,··· ,iN |X (i1, i2, · · · , iN )|2, respectively. The generalized transposition of

tensor X is ~Xn ∈ RIn1×In2×···×InN , which is rearranging the modes of X by the spec-
ified vector n. The corresponding operation and its inverse operation are denoted

as ~Xn = permute1(X ,n) and X = ipermute1 ( ~Xn,n), respectively. The general-

ized unfolding of X is a matrix defined as X[n1:d;nd+1:N ] = reshape1 ( ~Xn,
∏d
i=1 Ini

,

1Matlab commands
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i=d+1 Ini), whose elements satisfy

X[n1:d;nd+1:N ](j1, j2)

= X (i1, i2, · · · , iN ) with


j1 = in1

+

d∑
k=2

(
(ink−1)

k−1∏
m=1

Inm

)
,

j2 = ind+1
+

N∑
k=d+2

(
(ink−1)

k−1∏
m=d+1

Inm

)
.

The corresponding inverse operation is defined as X = Υ(X[n1:d;nd+1:N ]).

Definition 2.1 (Tensor contraction). Suppose that X ∈ RI1×I2×···×IN and Y ∈
RJ1×J2×···×JM have d modes of the same size (Ini

= Jmi
with i = 1, 2, · · · , d), the

tensor contraction along the n1:dth-modes of X and the m1:dth-modes of Y is an
(N+M-2d)th-order tensor that satisfied

Z = X ×m1:d
n1:d
Y ⇔ Z[1:N−d;N−d+1:N+M−2d] = X[nd+1:N ;n1:d]Y[m1:d;md+1:M ]. (7)

Definition 2.2 (FCTN decomposition). An Nth-order tensor X ∈ RI1×I2×···×IN
can be decomposed into a series of Nth-order factor tensors Gk with size R1,k×R2,k

× · · ·×Rk−1,k×Ik×Rk,k+1×· · ·×Rk,N , (k = 1, 2, · · · , N), whose elements satisfied

X (i1, i2, · · · , iN ) =

R1,2∑
r1,2=1

R1,3∑
r1,3=1

· · ·
R1,N∑
r1,N=1

R2,3∑
r2,3=1

· · ·
R2,N∑
r2,N=1

· · ·
RN−1,N∑
rN−1,N=1

{G1(i1, r1,2, r1,3, · · · , r1,N )G2(r1,2, i2, r2,3, · · · , r2,N ) · · ·
Gk(r1,k, r2,k, · · · , rk−1,k, ik, rk,k+1, · · · , rk,N ) · · ·
GN (r1,N , r2,N , · · · , rN−1,N , iN )}.

(8)

This decomposition is defined as the FCTN decomposition. The factors G1, G2,
· · · , GN are the core tensors of X and can be abbreviated as {G}1:N , then X =
FCTN({G}1:N ). The vector (R1,2, R1,3, · · · , R1,N , R2,3, R2,4, · · · , R2,N , · · · , RN−1,N ) is
defined as the FCTN-rank of the original tensor X .

The introduction mentions several tensor decompositions and their correspond-
ing tensor ranks. Now, we discuss the relationships between low-Tucker-rank (low-
multi-tubal-rank, low-TT-rank, and low-TR-rank) tensor and low-FCTN-rank ten-
sor.

Proposition 2.3. The data with low-Tucker-rank is also low-FCTN-rank.

Proof. Without loss of generality, we consider fourth-order data. The Tucker de-
composition of a fourth-order tensor X is denoted as X = Z ×1 G1 ×2 G2 ×3

G3 ×4 G4. Since the tensor X is of low-Tucker-rank, that is, its Tucker-rank
(R1, R2, R3, R4) is small. Then we perform FCTN decomposition on factor ten-
sor Z ∈ RR1×R2×R3×R4 , the resulting FCTN-rank (R1,2, R1,3, R1,4, R2,3, R2,4, R3,4)
will also be small since the FCTN-rank will not greater than the corresponding di-
mension size (R1, R2, R3, R4), see Fig. 2 (a). Finally, we can realize the FCTN
decomposition of tensor X through the previously obtained factors, i.e., X =
FCTN(G1×1G1,G2×2G2,G3×3G3,G4×4G4), and (R1,2, R1,3, R1,4, R2,3, R2,4, R3,4)
becomes the FCTN-rank of tensor X . It is obvious that the FCTN-rank of tensor
X is small.
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Figure 2. The illustration of tensor network decompositions.

Proposition 2.4. The data with low-multi-tubal-rank is also low-FCTN-rank.

Proof. The tensor multi-tubal-rank is a vector (R1, R2, R3) in which its elements
characterize the low-rank structure of horizontal slices, lateral slices, and frontal
slices of the transformed tensor along the first, second, and third mode, respectively.
Actually, the tensor tubal-rank is R3. In addition, Theorem 2.1 in [35] reveals that,
in characterizing the low-rankness of data, multi-tubal-rank is more powerful than
Tucker-rank. Equipped with Proposition 2.3, we can infer that when the data is of
low-multi-tubal-rank, it is also low-FCTN-rank.

Proposition 2.5. The data with low-TT-rank is also low-FCTN-rank.

Proof. In fact, TT decomposition can be viewed as a special case of FCTN decom-
position, see Fig. 2 (b). Since the tensor X is of low-TT-rank, that is, its TT-rank
(R1, R2, R3) is small. We can rewrite the TT-rank into the corresponding FCTN
form, i.e., (R1, 1, 1, R2, 1, R3), which is obviously small.

Proposition 2.6. The data with low-TR-rank is also low-FCTN-rank.

Proof. Similarly, TR decomposition can also be viewed as a special case of FCTN
decomposition, please see Fig. 2 (c). Since the tensor X is of low-TR-rank, that
is, its TR-rank (R1, R2, R3, R4) is small. We can rewrite the TR-rank into the
corresponding FCTN form, i.e., (R1, 1, R4, R2, 1, R3), which is obviously small.

3. RNC-FCTN model. In this section, inspired by the superiority of FCTN de-
composition for tensor completion, we suggest an FCTN-based nonconvex optimiza-
tion model for the general RTC problem as follows:

min
X ,E,{F}1:N

1

2
‖X − FCTN({F}1:N )‖2F + λ‖E‖1

s.t. PΩ(X + E) = PΩ(O),

(9)

where λ is regularization parameter. By introducing auxiliary valuable Y, we can
equivalently rewrite the problem (9) as the following unconstraint problem

min
X ,E,{F}1:N ,Y

1

2
‖X − FCTN({F}1:N )‖2F + λ‖E‖1 +

β

2
‖Y − X − E‖2F + Φ(Y), (10)

where

Φ(Y) =

{
0, PΩ(Y) = PΩ(O)

∞, otherwise
, (11)
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and β is a penalty parameter approaching positive infinity.
The nonconvex optimization problem (10) allows us to use the nonconvex solvers,

such as PAM algorithm [4, 1] and BCD algorithm [29]. In this work, we consider
to use the PAM algorithm to solve the suggested model. At each iteration, a single
block of variables is optimized, while the remaining variables are fixed. Detailedly,
the PAM-based algorithm is updated as the following iterative scheme:

F t+1
k = arg min

Fk

f({F}t+1
1:k−1, Fk, {F}tk+1:N , X t, Et, Yt) +

ρ

2
‖Fk −F t

k‖2F ,

X t+1 = arg min
X

f({F}t+1
1:N , X , E

t, Yt) +
ρ

2
‖X − X t‖2F ,

Et+1 = arg min
E

f({F}t+1
1:N , X

t+1, E , Yt) +
ρ

2
‖E − Et‖2F ,

Yt+1 = arg min
Y

f({F}t+1
1:N , X

t+1, Et+1, Y) +
ρ

2
‖Y − Yt‖2F ,

(12)

where f({F}1:N , X , E , Y) is the objective function of (10) and ρ > 0 is a proximal
parameter.

The corresponding details are as follows.
1) Update Fk: the Fk (k = 1, 2, · · · , N) subproblems can be equivalently rewrit-

ten as

F t+1
k = arg min

Fk

1

2
‖X t − FCTN({F}t+1

1:k−1, Fk , {F}tk+1:N )‖2F +
ρ

2
‖Fk −F t

k‖2F

= arg min
Fk

{1

2
‖Xt

(k) − (Fk)(k)(M
t
k)[m1:N−1;n1:N−1]‖2F +

ρ

2
‖(Fk)(k) − (Ft

k)(k)‖2F
}
,

(13)

whereMt
k = FCTN({F}t+1

1:k−1, {F}tk+1:N ). The problem (13) can be directly solved
as

(Ft+1
k )(k) =[Xt

(k)(M
t
k)[n1:N−1;m1:N−1] + ρ(Ftk)(k)]

[(Mt
k)[m1:N−1;n1:N−1](M

t
k)[n1:N−1;m1:N−1] + ρI]−1.

(14)

To facilitate the calculation of complexity, we simply set I1 = I2 = · · · = IN = I
and the FCTN rank Rk1,k2 as the same value R. This step of calculation mainly in-
cludes tensor contraction, matrix multiplication, and matrix inversion. The compu-

tational complexity of updating Fk is O(N
∑N
i=2 I

iRi(N−i)+i−1 +NIN−1R2(N−1) +

NR3(N−1)).
2) Update X : the X subproblem can be simplified as

X t+1 = arg min
X

1

2
‖X − FCTN({F}t+1

1:N )‖2F +
β

2
‖Y t −X − E t‖2F +

ρ

2
‖X − X t‖2F. (15)

The optimization function (15) is differentiable and its closed-form solution can be
obtained by solving the following Sylvester equation:

X + βX + ρX = FCTN({F}t+1
1 :N ) + β(Yt − E t) + ρX t , (16)

Directly solving (16), we have

X t+1 =
FCTN({F}t+1

1 :N ) + β(Yt − E t) + ρX t

1 + β + ρ
. (17)

The computational complexity of updating X is O(
∑N
i=2 I

iRi(N−i)+i−1).
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Algorithm 1 PAM-based algorithm for solving RNC-FCTN.

Input: The observed tensor Y, the maximal FCTN rank Rmax, and parameter λ.
Initialization: t = 0, X 0, E0, and F0

k , the original FCTN rank R, parameter β
and ρ;

1: Update F t+1
k via (14);

2: Update X t+1 via (17);
3: Update Et+1 via (19);
4: Update Yt+1 via (21);
5: If ‖X t+1 −X t‖F /‖X t‖F ≤ 10−2, set R=min{R+ 1, Rmax} and expand F t+1

k ;
6: Check convergence criteria: ‖X t+1 −X t‖F /‖X t‖F ≤ ε;
7: If the convergence criteria is not meet, set t := t+ 1 and go to Step 1.

Output: The low-rank part X and sparse part E .

3) Update E : the E subproblem can be equivalently rewritten as

Et+1 = arg min
E

λ‖E‖1 +
β

2
‖Yt −X t+1 − E‖2F +

ρ

2
‖E − Et‖2F

= arg min
E

λ‖E‖1 +
β + ρ

2
‖E − β(Yt −X t+1) + ρEt

β + ρ
‖2F ,

(18)

which can be updated as follows

Et+1 = soft(
β(Yt −X t+1) + ρE t

β + ρ
,

λ

β + ρ
). (19)

The computational complexity of updating E is O(IN ).
4) Update Y: the Y subproblem can be rewritten as

Yt+1 = arg min
Y

Φ(Y) +
β

2
‖Y − X t+1 − Et+1‖2F +

ρ

2
‖Y − Yt‖2F

= arg min
Y

Φ(Y) +
β + ρ

2
‖Y − β(X t+1 + Et+1) + ρYt

β + ρ
‖2F .

(20)

The Y subproblem has the following closed-form solution:

Yt+1 =

(
β(X t+1 + Et+1) + ρYt

β + ρ

)
ΩC

+OΩ. (21)

where ΩC is the complementary set of Ω. The computational complexity of updating
Y is O(IN ).

Theorem 3.1. The sequence {{F}t1:N , X t, Et, Yt}t∈N obtained by Algorithm 1
converges to a critical point of (9).

The detailed proof for Theorem 3.1 is presented in Appendix.
Although the nonconvex model has shown empirically excellent results, the exact

recovery guarantee is still missing and there are N(N − 1)/2 + 1 tuning parameters
for N -th order tensors.

4. RC-FCTN model. We first introduce a lemma in [44], which reveals the rela-
tionship between the rank of generalized tensor unfolding matrices and the FCTN
rank.
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Lemma 4.1. An Nth-order tensor X ∈ RI1×I2×···×IN can be represented by (8),
then we have

Rank(X[n1:d;nd+1:N ]) ≤
d∏
i=1

N∏
j=d+1

Rni,nj (Rni,nj = Rnj ,ni , if ni > nj). (22)

To tackle the exact recovery theory and parameters problem, we suggest a new
FCTN nuclear norm as a convex surrogate of FCTN rank by utilizing the rela-
tionship between the rank of generalized tensor unfolding matrices and the FCTN
rank.

Definition 4.2 (FCTN nuclear norm). For an Nth-order tensor X ∈ RI1×I2×···×IN ,
its FCTN nuclear norm is defined as

N̄∑
k=1

αk‖X[nk
1;nk

2]‖∗, (23)

where nk is the k-th permutation of the vector (1, 2, · · · , N), nk1 = nk1:bN/2c, nk2 =

nkbN/2c+1:N , αk ≥ 0,
∑N̄
k=1 αk = 1,

N̄ =

{
C
bN/2c
N , if N is odd,

C
bN/2c
N /2, if N is even,

(24)

and b·c denotes the floor function.

Based on the proposed FCTN nuclear norm, we suggest a robust convex opti-
mization model RC-FCTN for the RTC problems as follows:

min
X ,E

N̄∑
k=1

αk‖X[nk
1;nk

2]‖∗ + λ‖E‖1

s.t. PΩ(X + E) = PΩ(O),

(25)

where X and E are the low-rank component and the sparse component, λ is a
regularization parameter, O is the observed data, and PΩ is a projection that the
entries in the set Ω are themselves while the other entries are set to zeros.

4.1. ADMM-based algorithm for solving RC-FCTN. For the convex opti-
mization problem (25), we develop an ADMM-based algorithm [5] to solve it. By
introducing auxiliary variables Lk (k = 1, 2, · · · , N̄), the problem (25) can be rewrit-
ten as

min
X ,E,Lk

N̄∑
k=1

αk‖Lk[nk
1;nk

2]‖∗ + λ‖S‖1 + Φ(Y)

s.t. Y = X + E ,S = E ,Lk = X , k = 1, 2, · · · , N̄ ,

(26)

where

Φ(Y) =

{
0, PΩ(Y) = PΩ(O)

∞, otherwise
. (27)
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The augmented Lagrangian function of (26) is

L(X , E ,S,Y,Lk,Zk,P,Q) =

N̄∑
k=1

{
αk‖Lk[nk

1;nk
2]‖∗ + 〈Zk,Lk −X〉+

µk

2
‖Lk −X‖2F

}
+ λ‖S‖1 + 〈P,Y − X − E〉+

γ

2
‖Y − X − E‖2F + 〈Q,S − E〉+

σ

2
‖S − E‖2F + Φ(Y),

(28)

where µk, γ, and σ are penalty parameters, and Zk, P, and Q are Lagrangian
multipliers. According to the ADMM framework [5, 38], Lk, S, Y, X , and E
can be divided into two groups, and then the two groups of variables are updated
alternately.

(Lt+1
k , St+1, Yt+1) = arg min

Lk,S,Y
L(X t, Et,S,Y,Lk,Ztk,Pt,Qt), (29)

and

(X t+1, Et+1) = arg min
X ,E

L(X , E ,St+1,Yt+1,Lt+1
k ,Ztk,Pt,Q)t. (30)

Now, we present more details of each subproblem.
1) Update Lk: the Lk (k = 1, 2, · · · , N̄) subproblem can be easily transformed

into its equivalent formulation:

Lt+1
k = arg min

Lk

αk‖Lk[nk
1;nk

2]‖∗ + 〈Zk,Lk −X〉+
µk
2
‖Lk −X‖2F

= arg min
Lk

αk‖Lk[nk
1;nk

2]‖∗ +
µk
2
‖Lk[nk

1;nk
2] − (X t − Z

t
k

µk
)[nk

1;nk
2]‖2F ,

(31)

which has the closed-form solution

Lt+1
k[nk

1;nk
2]

= UΣαk/µk
VT , (32)

where (X t − Z
t
k

µk
)[nk

1;nk
2] = UΣVT , Σαk/µk

= diag(max(Σr,r − αk/µk, 0)), and Σr,r

is the rth singular value of Σ. Lt+1
k = Υ(Lt+1

k ). The computational complexity of

updating Lk is O
(∑N̄

i=1 piqimin (pi, qi)
)

(pi =
∏l
i=1 Ini

and qi =
∏N
i=l+1 Ini

).
2) Update S: the S-subproblem is

St+1 = arg min
S

λ‖S‖1 + 〈Qt,S − Et〉+
σ

2
‖S − Et‖2F

= arg min
S

λ‖S‖1 +
σ

2
‖S − Et +

Qt

σ
‖2F .

(33)

It has the following closed-form solution:

St+1 = softλ/σ(Et − Q
t

σ
), (34)

where softλ/σ(.) denotes the soft shrinkage operator with threshold value λ/σ. The

computational complexity of updating S is O(
∏N
i=1 Ii).

3) Update Y: the Y subproblem is

Yt+1 = arg min
Y

Φ(Y) + 〈Pt,Y − X t − Et〉+
γ

2
‖Y − X t − Et‖2F

= arg min
Y

Φ(Y) +
γ

2
‖Y − X t − Et +

Pt

γ
‖2F .

(35)
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Algorithm 2 ADMM-based algorithm for solving RC-FCTN.

Input: The observed tensor Y0, parameter λ.
Initialization: t = 0, X 0, E0, S0, L0

k, Lagrangian multiplies Z0
k (k = 1, 2, · · · , N̄),

P, Q, parameters µk (k = 1, 2, · · · , N̄), γ and σ;
1: Update Lt+1

k via (32);
2: Update St+1 via (34);
3: Update Yt+1 via (36);
4: Update X t+1 and Et+1 via (40) and (41);
5: Update the multiplies via (42);
6: Check convergence criteria: ‖X t+1 −X t‖F /‖X t‖F ≤ ε;
7: If the convergence criteria is not meet, set t := t+ 1 and go to Step 1.

Output: The low-rank component X and sparse component E .

Therefore, Yt+1 is updated via the following step:

Yt+1 = OΩ + (X t + Et − P
t

γ
)ΩC , (36)

where ΩC denotes the complementary set of Ω. The computational complexity of

updating Y is O(
∏N
i=1 Ii).

4) Update (X , E): The (X , E) subproblem is a least squares problem

(X t+1, Et+1) = arg min
X ,E

N̄∑
k=1

{
〈Zt

k,Lt+1
k −X〉+

µk

2
‖Lt+1

k −X‖2F
}

+ 〈Pt,Yt+1 −X − E〉

+
γ

2
‖Yt+1 −X − E‖2F + 〈Qt,St+1 − E〉+

σ

2
‖St+1 − E‖2F

= arg min
X ,E

N̄∑
k=1

{µk

2
‖Lt+1

k −X +
Zt

k

µk
‖2F
}

+
γ

2
‖Yt+1 −X − E +

Pt

γ
‖2F

+
σ

2
‖St+1 − E +

Qt

σ
‖2F .

(37)

The objective function of (37) is represented by F (X , E). Taking ∂F/∂X = 0 and
∂F/∂E = 0, we have

(

N̄∑
k=1

µk + γ)X + γE =

N̄∑
k=1

µk(Lt+1
k +

Ztk
µk

) + γ(Yt+1 +
Pt

γ
) (38)

and

γX + (γ + σ)E = γ(Yt+1 +
Pt

γ
) + σ(St+1 +

Qt

σ
). (39)

Based on the Cramer’s Rule, X and E can be exactly obtained as follows:

X t+1 = (γN t − (γ + σ)Mt)/(γ2 −
( N̄∑
k=1

µk + γ
)

(γ + σ)) (40)

and

Et+1 =
(
γMt −

( N̄∑
k=1

µk + γ
)
N t
)
/(γ2 −

( N̄∑
k=1

µk + γ
)

(γ + σ)), (41)

whereMt =
∑N̄
k=1 µk(Lt+1

k +Ztk/µk)+γ(Yt+1 +Pt/γ) and N t = γ(Yt+1 +Pt/γ)+

σ(St+1 +Qt/σ). The computational complexity of updating X and E is O(
∏N
i=1 Ii).
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Algorithm 3 SVD-based FCTN decomposition for tensor X .

Input: Tensor X ∈ RI1×I2×···×IN , the FCTN rank.
Initialization: Core tensors Gk, k = 1, ..., N relate to the FCTN decomposition.

1: Choose one unfolding matrix X[n1;n2];

2: Compute the rank R̄l truncated SVD of X[n1;n2]: X[n1;n2] = UlΣlV
T
l + E,

where dl = l = bN/2c,R̄l =
l∏
i=1

N∏
j=l+1

Ri,j , and E is error matrix;

3: Fold the matrix Ul and Vl: Ul = Υ(Ul) ∈ CI1I2···IlR̄l , Vl = Υ(Vl) ∈
CIl+1Il+2···IN R̄l ;

4: Let dl−1 = bl/2c and dl+1 = b(N − l)/2c, unfold Ul and Vl with size

I1
N∏

i=l+1

R1,i · · · Idl−1

N∏
i=l+1

Rdl−1,i × Idl−1+1

N∏
i=l+1

Rdl−1+1,i · · · Il
N∏

i=l+1

, Rl,i and

l∏
i=1

Ri,l+1Il+1 · · ·
l∏
i=1

Ri,l+dl+1
Il+dl+1

×
l∏
i=1

Ri,l+dl+1+1Il+dl+1+1 · · ·
l∏
i=1

Ri,NIN , re-

spectively;
5: Compute the rank R̄l−1 and rank R̄l+1 truncated SVD of new matrix Ul and

Vl, respectively: Ul = Ul−1Σl−1V
T
l−1 +E and Vl = Ul+1Σl+1V

T
l+1 +E, where

R̄l−1 =
dl−1∏
i=1

l∏
j=dl−1+1

Ri,j and R̄l+1 =
l+dl+1∏
i=l+1

N∏
j=l+dl+1+1

Ri,j ;

6: Fold the matrix Ul−1, Vl−1, Ul+1, and Vl+1;
· · ·

7: Form the corresponding factor tensors Gk with size R1,k×R2,k×· · ·×Rk−1,k×
Ik ×Rk,k+1 × · · · ×Rk,N , (k = 1, 2, · · · , N).

5) Update multipliers: the Lagrangian multipliers are updated as follows:
Zt+1
k = Ztk + δµk(X t+1 − Lt+1

k ), k = 1, 2, · · · , N̄ ,
Pt+1 = Pt + δγ(Y − X − E),

Qt+1 = Qt + δσ(E − S).

(42)

where δ is the step length. The complexity of updating multipliers is O(
∏N
i=1 Ii).

The whole process of the ADMM-based algorithm for solving RC-FCTN is sum-
marized in Algorithm 2.

Theorem 4.3. Within the framework of ADMM, sequence {Ltk, St, Yt, X t, Et}t∈N
obtained by Algorithm 2 converges to the global minimum point of the problem (25).

The detailed proof for Theorem 4.3 is presented in Appendix.

4.2. SVD-based FCTN decomposition. To study the exact recovery theory of
the proposed RC-FCTN, we propose a constructive SVD-based FCTN decomposi-
tion to compute the core tensors by sequential SVDs, which establishes the con-
nection of the incoherence conditions between the proposed model and the robust
matrix recovery model.

For an Nth-order tensor X ∈ RI1×I2×···×IN , its FCTN rank is

(R1,2, R1,3, · · · , R1,N , R2,3, R2,4, · · · , R2,N , · · · , RN−1,N ).

Denote R̂i = ΠN
j=1,j 6=iRij , then it follows the results given in [33], the fully-

connected graph based tensor network states can be categorized into three types:
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Figure 3. The graphical representation of the SVD-based FCTN
decomposition. (a), (b), and (c) are the graphical representation
of the SVD-based FCTN decomposition of a fourth-order tensor, a
fifth-order tensor, and an N th-order tensor, respectively.

subcritical, critical and supercritical. If R̂i ≤ Ii(R̂i ≥ Ii),∀i = 1, ..., N , where at

least one inequality is strict, then it is called subcritical (supercritical), if R̂i =
Ii,∀i = 1, ..., N , it is critical. In this paper we mainly focus on the subcritical
case, since a supercritical FCTN case can be reduced to the subcritical case by a
surjective birational map [33].

Let dl = l = bN/2c, n is the permutation of vector (1, 2, · · · , N), the whole
process of SVD-based FCTN decomposition is summarized in Algorithm 3 2. To
facilitate its understanding, we show the graphical representation of SVD-based
FCTN decomposition of a fourth-order tensor, a fifth-order tensor, and an N th-
order tensor in Fig. 3.

2The SVD-based FCTN decomposition can be performed on arbitrary n-based generalized
tensor transposition. Here, for simplicity, we just take the vector n = (1, 2, · · · , N) as an example.
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The tensor SVD-based FCTN decomposition can be denoted as

X = FCTN-SVD(Ĝ1,Σ1, Ĝ2,Σ2, · · · ,ΣN−1, ĜN ). (43)

When the Σi (i = 1, 2, · · · , N − 1) are absorbed into matrices Ui and Vi dur-
ing the truncated SVD processed, we can get the FCTN decomposition X =
FCTN({G}1:N ).

4.3. FCTN incoherence conditions and exact recovery guarantee. Based
on the SVD-based FCTN decomposition, we firstly propose the FCTN incoherence
conditions and then establish the exact recovery guarantee for the proposed RC-
FCTN.

Theorem 4.4. Suppose that T ∈ RI1×I2×···×IN has a SVD-based FCTN decompo-
sition

T = FCTN-SVD(Ĝ1,Σ1, Ĝ2,Σ2, ...,ΣN−1, ĜN ), (44)

with the FCTN-rank (R1,2, R1,3, · · · , R1,N , R2,3, R2,4, · · · , R2,N , · · · , RN−1,N ). Then,

its n-based generalized tensor transposition ~T n can be decomposes as

~T n = FCTN-SVD(~Gn
n1
, ~Σ1, ~Gn

n2
, ~Σ2, · · · , ~ΣN−1, ~Gn

nN
), (45)

and the FCTN-rank of ~T n is (Rn1,n2
, Rn1,n3

, · · · , Rn1,nN
, Rn2,n3

, Rn2,n4
, · · · , Rn2,nN

,
· · · , RnN−1,nN

), Rni,nj
= Rnj ,ni

, if ni > nj.

Based on Theorem 4.4, when we suppose that T satisfies the following FCTN

incoherent conditions for the vector n = (1, 2, · · · , N), then for any vector n, ~T n

satisfies the FCTN incoherent conditions. Therefore, we just consider the vector
n = (1, 2, · · · , N).

Definition 4.5 (FCTN Incoherence Conditions). Let T ∈ RI1×I2×···×IN be anNth-
order tensor represented by the SVD-based FCTN decomposition with FCTN-rank
(R1,2, R1,3, · · · , R1,N , R2,3, R2,4, · · · , R2,N , · · · , RN−1,N ), then T is said to satisfy
the FCTN incoherence conditions if there exists parameters µi for any ξ =
{ξ1, · · · , ξm} ⊆ {1, · · · , i− 1, i+ 1, · · · , N} (m ≤ bN/2c) such that

max
l=1,··· ,L

∥∥∥∥(Ĝi

)
[ξ;ξc]

· ei,l
∥∥∥∥2

F

≤
µi
∏
k∈ξ Ri,k

Ii
∏
k∈ξc,k 6=iRi,k

, i = 1, 2, · · · , N, (46)

where L = Ii
∏
k∈ξc,k 6=iRi,k, [ei,1, ei,2, · · · , ei,L] be an identity matrix of size L×L,

and ξc is the relative complement of ξ with respect to the set {1, 2, · · · , N}.

If the generalized unfolding matrices of a tensor obey the matrix incoherent con-
ditions, then the tensor will satisfy the FCTN incoherence conditions. Specifically,
Candes and Tao listed some model matrices [7] that satisfies the matrix incoherent
conditions, including uniformly bounded orthogonal model, low-rank low-coherence
model, and random orthogonal model.

Based on the tensor network contraction operation given in Definition 2.1 and
the tensor network incoherence conditions on core tensors given in Definition 4.5,
we have the following results. For convenience, we denote nk(1) = Πl

i=1Ink
i
, nk(2) =

ΠN
i=l+1Ink

i
, n̄k = max(nk(1), n

k
(2)), n̂

k = min(nk(1), n
k
(2)), and rk = Πl

i=1ΠN
j=l+1Rnk

i ,n
k
j

(Rnk
i ,n

k
j

= Rnk
j ,n

k
i
, if nki > nkj ).
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Theorem 4.6. Suppose that T satisfies the FCTN incoherence conditions. Assume
that the observation set Ω is uniformly distributed among all sets of cardinality

m = ρ
∏N
k=1 Ik, where ρ is the sampling ratio. Also suppose that each observed

entry is independently corrupted with probability γ. Then, there exist universal

constants ck1, ck2 > 0 such that with probability at least 1 −
∑N̄
k=1 ck1(n̄k)−ck2 , the

recovery of underlying tensor X0 with λ̂ =
∑N̄
k=1 αk/

√
ρn̄k is exact, provided that

rk ≤ crn̂
k

µk(log(n̄k))2
and γ ≤ cγ , k = 1, ..., N̄ (47)

where µk = max{Πl
i=1µnk

i
Πl−1
i=1Πl

j=i+1R
2
nk
i ,n

k
j
,ΠN

i=l+1µnk
i
ΠN−1
i=l+1ΠN

j=i+1R
2
nk
i ,n

k
j
}, cr

and cγ are two positive constants.

Proof. The proof can be split into two steps. Firstly, we prove that the arbitrary
unfolding matrix in (25) satisfies the matrix incoherence conditions in [6] when the
original tensor satisfies the FCTN incoherence conditions given in (46). Secondly,
we prove that the pair (X0, E) derived from some convex optimization algorithms is
the unique optimal solution to problem (25).

Firstly, we use a fourth-order tensor T ∈ RI1×I2×I3×I4 as an example to show
the process. For simplicity, set n1 = (1, 2, 3, 4) and l = bN/2c = 2. Then it follows
the SVD-based FCTN decomposition algorithm we can get

T = FCTN-SVD(Ĝ1,Σ1, Ĝ2,Σ2, Ĝ3,Σ3, Ĝ4),

and

T[1,2;3,4] = U2Σ2V
H
2 ,

where

U2 = U[1,2;3,4] = perm&resh((Ĝ1)[1,3,4;2]Σ1(Ĝ2)[1;2,3,4], I1I2, R1,3R1,4R2,3R2,4),

V2 = V[1,2;3,4] = perm&resh((Ĝ3)[1,2,3;4]Σ3(Ĝ4)[3;1,2,4], I3I4, R1,3R1,4R2,3R2,4),

where the perm&resh operation means that we first do the permute operation and
then do the reshape operation with a specified dimension or size.

By the FCTN incoherence conditions given in (46), and choosing i = 1, ξ = {2},
we obtain

max
l=1,··· ,I1R1,3R1,4

‖(Ĝ1)[2;1,3,4] · e1l‖2F ≤
µ1R1,2

I1R1,3R1,4
, (48)

Choosing i = 2, ξ = {1}, we have

max
l=1,··· ,I2R2,3R2,4

‖(Ĝ2)[1;2,3,4] · e2l‖2F ≤
µ2R1,2

I2R2,3R2,4
. (49)

Moreover, following the SVD-based FCTN decomposition method, we have ‖Σ1‖ ≤√
R1,3R1,4R2,3R2,4. Combine above and note that

‖U[1,2;3,4]‖∞
= max
i=1,··· ,I1R1,3R1,4, j=1,··· ,I2R2,3R2,4

((Ĝ1)[2;1,3,4])
T
i Σ1((Ĝ2)[1;2,3,4])j

≤ max
i=1,··· ,I1R1,3R1,4, j=1,··· ,I2R2,3R2,4

‖((Ĝ1)[2;1,3,4])
T
i ‖‖Σ1‖‖((Ĝ2)[1;2,3,4])j‖

≤
√
µ1µ2R1,2√
I1I2

(50)
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where Gi is the ith column of the matrix G. Then

max
i=1,··· ,I1I2

‖UH
[1,2;3,4] · ei‖2F ≤

µ1µ2R
2
1,2R1,3R1,4R2,3R2,4

I1I2
. (51)

Similarly, we can get

max
j=1,··· ,I3I4

‖VH
[1,2;3,4] · ej‖2F ≤

µ3µ4R
2
3,4R1,3R1,4R2,3R2,4

I3I4
. (52)

Moreover,

‖U[1,2;3,4]V
H
[1,2;3,4]‖∞ ≤

√
µ1µ2R2

1,2R1,3R1,4R2,3R2,4

I1 · I2
·

√
µ3µ4R2

3,4R1,3R2,3R1,4R2,4

I3 · I4

=

√
µ1µ2µ3µ4R1,2R3,4R1,3R1,4R2,3R2,4√

I1I2I3I4
. (53)

Combine (51), (52), and (53), and set

µ = max{µ1µ2R
2
1,2, µ3µ4R

2
3,4, µ1µ2µ3µ4R

2
1,2R

2
3,4R1,3R1,4R2,3R2,4}

we can verify that the unfolding matrix T[1,2;3,4] satisfies the corresponding inco-

herence conditions in [6]. Similarly, for any specified rearrangement nk, we can
also verify that the generalized unfolding matrix T[nk

1;nk
2] satisfies corresponding

incoherence conditions in [6].
For an Nth-order tensor T ∈ RI1×I2×···×IN , its SVD-based FCTN decomposition

can be expressed as

T = FCTN-SVD(Ĝ1,Σ1, Ĝ2, · · · ,Σl−1, Ĝl,Σl, Ĝl+1, · · · , ĜN ).

For simplicity, setting n1 = (1, 2, · · · , N), l = bN/2c, n1
1 = (1, · · · , l), and n1

2 =
(l + 1, · · · , N), then,

T[n1
1;n1

2] = UlΣlV
H
l .

For Ul, we can get the following iteration expression

U2 = perm&resh((Ĝ1)[1,3,··· ,N ;2]Σ1(Ĝ2)[1;2,3,··· ,N ], I1I2, ΠN
i=3R1,iR2,i),

Û2 = perm&resh(U2, I1I2ΠN
i=4R1,iR2,i, R1,3R2,3),

· · · ,

Uk = perm&resh(Ûk−1Σk−1(Ĝk)[1,··· ,k−1;k,··· ,N ], Πk
i=1Ii, Πk

i=1ΠN
j=k+1Ri,j),

Ûk = perm&resh(Uk, Πk
i=1IiΠ

k
i=1ΠN

j=k+2Ri,j , Πk
i=1Ri,k+1),

· · · ,

Ul = perm&resh(Ûl−1Σl−1(Ĝl)[1,··· ,l−1;l,··· ,N ], Πl
i=1Ii, Πl

i=1ΠN
j=l+1Ri,j).

(54)

Recall the incoherence conditions in (46), we have

max
l=1,··· ,I1ΠN

i=3R1,i

‖(Ĝ1)[2;1,3,··· ,N ] · e1l‖2F ≤
µ1R1,2

I1ΠN
i=3R1,i

(55)

and

max
l=1,··· ,IkΠN

i=k+1Rk,i

‖(Ĝk)[1,··· ,k−1;k,··· ,N ] · ekl‖2F ≤
µkΠk−1

i=1 R1,i

IkΠN
i=k+1Rk,i

, k = 2, · · · , l. (56)
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Moreover, following the SVD-based FCTN decomposition method, we have ‖Σ1‖ ≤√
ΠN
i=3R1,iR2,i. Combine above and note that

‖Û2‖∞ ≤
√
µ1µ2R1,2√
I1I2

,

max
i=1,··· ,I1I2

‖UH
2 · ei‖2F ≤

µ1µ2R
2
1,2ΠN

i=3R1,iR2,i

I1I2
,

‖Ûk‖∞ ≤
√

Πk
i=1µiΠ

k−1
i=1 Πk

j=i+1Ri,j√
Πk
i=1Ii

, k = 3, 4, · · · , l,

max
i=1,··· ,Πk

i=1Ii
‖UH

k · ei‖2F ≤
Πk
i=1µiΠ

k−1
i=1 Πk

j=i+1R
2
i,jΠ

k
i=1ΠN

j=k+1Ri,j

Πk
i=1Ii

, k = 3, 4, · · · , l.

(57)
Then, we have

max
i=1,··· ,Πl

i=1Ii
‖UH

l · ei‖2F ≤
Πl
i=1µiΠ

l−1
i=1Πl

j=i+1R
2
i,jr

Πl
i=1Ii

, (58)

max
j=1,··· ,ΠN

i=l+1Ii
‖VH

l · ej‖2F ≤
ΠN
i=1+1µiΠ

N−1
i=l+1ΠN

j=i+1R
2
i,jr

ΠN
i=l+1Ii

. (59)

Moreover,

‖UlV
H
l ‖∞ ≤

√
ΠN
i=1µiΠ

l−1
i=1Πl

j=i+1R
2
i,jΠ

N−1
i=l+1ΠN

j=i+1R
2
i,jr

ΠN
i=1Ii

,

where r = Πl
i=1ΠN

j=l+1Ri,j . To sum up, the unfolding matrix T[n1
1;n1

2] satisfies the

corresponding incoherence conditions of robust matrix recovery problems in [6].
By using the same procedure as the proof of vector (1, 2, · · · , n), for any specified
rearrangement nk, we can also verify that the generalized unfolding matrix T[nk

1;nk
2]

satisfies the corresponding incoherence conditions in [6].
Secondly, the convex model (25) can be regarded as a convex combination of N̄

robust matrix completion models. Invoking the Theorem 1.1 in [6] and recalling
that the incoherence conditions of the unfolding matrices that appeared in (25) are
satisfied, we can prove the Theorem 4.6.

This exact recovery guarantee ensures that one can recover a tensor of low-FCTN-
rank exactly with overwhelming probability provided that its rank is sufficiently
small and its corrupted entries are reasonably sparse.

5. Numerical experiments. In this section, we firstly conduct the RTC exper-
iments on synthetic data in subsection 5.1, which further corroborates our theo-
retical results. In subsection 5.3-5.5, we conduct numerical experiments on fourth-
order color videos and hyperspectral videos (HSV) to verify the effectiveness of the
proposed RC-FCTN and RNC-FCTN. To adequately examine the recovery perfor-
mance of RC-FCTN and RNC-FCTN, we compare the proposed methods with four
representative RTC methods: Tucker rank based method [13] (denoted as “SNN”),
tubal rank based method [20] (denoted as “TNN”), TT rank based method [32]
(denoted as “TTNN”), and TR rank based method [14] (denoted as “RTRC”).

For the fourth-order data X ∈ RI1×I2×I3×I4 , let I =
∏4
i=1 Ii, R1 = R1,2R1,3R1,4,

R2 = R1,2R2,3R2,4, R3 = R1,3R2,3R3,4, and R4 = R1,4R2,4R3,4, we summarize
the computational complexity of each iteration of the presented algorithms and the
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Table 2. The comparison of the computational complexity of the
proposed methods and compared methods.

Method The computational complexity of each step

SNN O
(∑4

k=1 pkqk min (pk, qk)
) (

pk = Ik and qk =
∏4

i=1,i 6=k Ii
)

TNN O
(
I1I2log(I3I4)) + min(I1, I2)

∏4
i=1 Ii

)
TTNN O

(∑4
k=1 pkqk min (pk, qk)

) (
pk =

∏k
i=1 Ii and qi =

∏4
i=k+1 Ii

)
RTRC O

(∑2
k=1 pkqk min (pk, qk)

) (
pk =

∏k+1
i=k Ii and qi =

∏k+3
i=k+2 Ii with I5 = I1

)
RC-FCTN O

(∑3
k=1 pkqk min (pk, qk)

) (
pk =

∏l
i=1 Ini and qk =

∏4
i=l+1 Ini

)
RNC-FCTN O(4

∑4
k=2 I

kRk(4−k)+k−1 + 4I3R6)

compared ones in Table 2. For the tensor nuclear norm-based convex methods (in-
cluding SNN, TTNN, RTRC, and RC-FCTN), their computational complexities are
mainly related to the sizes of the corresponding unfolding matrices (e.g., X(k), X[k],
X<k,L>, and X[n1:d;nd+1:N ]). Clearly, the computational complexity of RC-FCTN
is higher than that of RTRC. For other methods, we cannot theoretically compare
their computational complexities as the output of the min function is different for
different dimension sizes combination.

For all methods in all experiments of subsection 5.3-5.5, we employ the following
setup to make a fair comparison: (i) The data is normalized into [0, 1]; (ii) The
relative error is set to 10−4; (iii) We utilize a simple linear interpolation strategy [30]
to obtain the Y0. We employ the mean of peak signal-to-noise rate (MPSNR) and
the mean of structural similarity (MSSIM) as the initial tensor quantitative metric
[43]. The parameters in compared methods are manually adjusted to the optimal
performance, which refers to the discussion in their articles. Meanwhile, the best
and the second-best results are highlighted by bold and underline, respectively.

5.1. Synthetic tensor completion. To verify the validity of exact recovery in
Theorem 4.6, we firstly execute experiments on synthetic data. We simulate the
tensor of size I× I× I× I by FCTN contraction with varying dimensions I=20 and
40. We generate the tensor X 0 = FCTN(G1,G2,G3,G4) with FCTN rank Ri,j (1 ≤
i < j ≤ 4, and i, j ∈ N+) as the same value r. The core tensors are independently
satisfied the uniform distribution U(0, 1). Then, the whole entries are corrupted by
salt and pepper (SaP) noise with density s. And we choose the observation with
sampling ratio (SR) ρ. We test the recovery ability of the proposed RC-FCTN on
eight cases and show the results in Table 3. We design r = 0.1I and 0.2I, ρ = 0.9 and
0.8, and s = 0.05 and 0.1. As observed, our method obtains the negligible relative
error ‖X − X 0‖F /‖X 0‖F . These numerical results of all cases validly corroborate
the exact recovery in Theorem 4.6 well.

5.2. Parameter setting. In RNC-FCTN model, the important parameters are
regularization parameter λ and FCTN-rank while in RC-FCTN model, the im-
portant parameter is regularization parameter λ. Now, we discuss the influence of
parameters on the experiment results and provide the parameters selection strategy.
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Table 3. Exact recovery on random synthetic data in different cases.

size I rank r ρ s ‖X − X 0‖F /‖X 0‖F size I rank r ρ s ‖X − X 0‖F /‖X 0‖F

20

0.1I

1
0.05 1.28× 10−4

40

0.1I

1
0.05 1.06× 10−4

0.1 1.56× 10−4 0.1 1.12× 10−4

0.9
0.05 1.93× 10−4

0.9
0.05 1.72× 10−4

0.1 1.96× 10−4 0.1 2.25× 10−4

0.2I

1
0.05 4.74× 10−4

0.2I

1
0.05 1.77× 10−4

0.1 7.83× 10−4 0.1 2.88× 10−4

0.9
0.05 6.55× 10−4

0.9
0.05 2.66× 10−4

0.1 8.35× 10−4 0.1 3.01× 10−4
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Figure 4. The MPSNR and MSSIM values recovered by RNC-
FCTN with respect to λ0 for two color videos.

R1,2 R1,3 R1,4
26 28 30 32 34 36 38 40 42 44

31

31.5

32

32.5

33

PS
N

R

0.86

0.88

0.9

0.92

0.94

0.96

SS
IM

1 2 3 4 5 6 7 8
31

31.5

32

32.5

33

PS
N

R

0.86

0.88

0.9

0.92

0.94

0.96

SS
IM

1 2 3 4 5 6 7 8 9 10 11
31

31.5

32

32.5

33

PS
N

R

0.86

0.88

0.9

0.92

0.94

0.96

SS
IM

Figure 5. The MPSNR and MSSIM values recovered by RNC-
FCTN with respect to the FCTN-rank for color video bunny .

1) Influence of regularization parameter λ in RNC-FCTN: The parameter
λ actually balances the low-FCTN-rank term and the sparse term. By following
[15, 25, 14], we set λ = λ0/

√
max(I1, I2)I3I4, and thus we discuss the influence

of λ0, which is proportionate to λ. We display the MPSNR and MSSIM values
recovered by RNC-FCTN with respect to λ0 for two color videos with SR=0.2 and
SaP=0.1 in Fig. 4. As observed, the method RNC-FCTN achieves the optimal
performance when λ0 is around 1. Inspired by this observation, the parameter λ0

can be selected from the candidate set {0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6}.
2) Influence of FCTN-rank in RNC-FCTN: By following [44], we just tune

Rmax
1,2 , Rmax

1,3 , and Rmax
1,4 , where Rmax

2,4 is set to be the same as Rmax
1,4 , and Rmax

2,3 and
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Figure 6. The MPSNR and MSSIM values recovered by RC-
FCTN with respect to λ for two color videos.

Rmax
3,4 are set to be the same as Rmax

1,3 . Fig. 5 shows the MPSNR and MSSIM
values recovered by RNC-FCTN with respect to the FCTN-rank for color video
bunny with SR=0.2 and SaP=0.1. When the FCTN-rank reaches the suitable
value, we can achieve optimal performance. Motivated by this observation, pa-
rameters Rmax

1,2 , Rmax
1,3 , and Rmax

1,4 are suggested to select from the candidate sets
{20, 25, 30, 35, 40, 45, 50}, {1, 3, 5, 7}, and {3, 6, 9, 12}, respectively.

3) Influence of regularization parameter λ in RC-FCTN: For the proposed
method RC-FCTN, the theoretical optimal value for the regularization parameter
λ is given in Theorem 4.6. In all real experiments, we finely tune the regularization
parameter λ from the mesh grids (e.g., 0.024, 0.025, and 0.026) around the theo-
retical optimal value (e.g., 0.238 for the color videos with SR=0.2 and SaP=0.1) to
obtain the best MPSNR and MSSIM results. We display the MPSNR and MSSIM
values recovered by RC-FCTN with respect to λ for two color videos with SR=0.2
and SaP=0.1 in Fig. 6. As observed, it achieves the optimal performance when λ
is around 0.025, which is slightly higher than the theoretical optimal value 0.0238.

5.3. Color video completion. To demonstrate the effectiveness of the proposed
methods, we execute experiments on two color videos 3 (height × width × color
channel × frames) including bunny and elephants. We consider RTC problem for
the testing color videos with SaP=0.1 and different SRs {0.6, 0.4, 0.2}.

We report the MPSNR/MSSIM values, iteration number, and CPU time obtained
by all compared RTC methods on the videos bunny and elephants in Table 4. Both
convex method RC-FCTN and nonconvex method RNC-FCTN can achieve superior
performance compared with the other methods although they need more CPU time.
Moreover, the nonconvex RNC-FCTN requires more iterations than the convex RC-
FCTN, which leads to a significant difference in CPU time. In RC-FCTN model,
we consider the convex relaxation of the FCTN-rank, i.e., the FCTN nuclear norm,
which allows us to apply the convex solver. However, the FCTN nuclear norm
cannot exactly approximate the FCTN-rank. In RNC-FCTN model, we directly
consider the FCTN-rank, which leads to a better recovery performance as compared
to RC-FCTN.

Furthermore, Fig. 7 shows the visual results and their corresponding residual
images (the mean of the absolute difference between three color channels of the
recovered images and the ground truth) of the two color videos with SR=0.2 and
SaP=0.1. From Fig. 7, it is easy to see that the proposed methods are markedly

3The data is available at http://trace.eas.asu.edu/yuv/.

http://trace.eas.asu.edu/yuv/
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Table 4. The MPSNR/MSSIM, iteration number, and CPU time
(seconds) of the recovered color videos by different methods for
different cases.

Data Methods
SaP=0.1, SR=0.6 SaP=0.1, SR=0.4 SaP=0.1, SR=0.2

MPSNR MSSIM Iter Time MPSNR MSSIM Iter Time MPSNR MSSIM Iter Time

bunny

Observed 9.357 0.095 - - 8.035 0.062 - - 7.024 0.033 - -

SNN 26.80 0.832 128 83.5 22.61 0.653 142 87.3 14.92 0.415 143 85.3

TNN 34.61 0.955 34 22.9 30.59 0.925 34 22.6 25.67 0.774 34 22.1

TTNN 32.86 0.966 60 27.8 29.80 0.937 66 29.3 23.90 0.764 74 33.7

RTRC 34.05 0.962 66 26.7 30.87 0.924 67 28.5 26.60 0.835 72 30.1

RC-FCTN 34.92 0.975 85 60.1 31.86 0.946 87 62.1 26.56 0.837 92 64.4

RNC-FCTN 39.72 0.983 643 849.7 37.11 0.977 656 856.1 32.85 0.941 676 880.8

elephants

Observed 7.146 0.049 - - 5.631 0.031 - - 4.516 0.017 - -

SNN 28.80 0.863 141 88.7 24.21 0.759 143 89.9 14.45 0.516 144 85.7

TNN 34.35 0.958 32 22.2 31.05 0.928 33 22.5 26.28 0.811 32 21.8

TTNN 32.61 0.943 62 28.1 29.75 0.933 68 30.5 25.42 0.845 67 29.4

RTRC 33.69 0.961 66 27.2 30.52 0.929 68 28.5 26.31 0.847 75 32.3

RC-FCTN 36.99 0.974 83 62.3 33.25 0.956 87 62.1 27.94 0.877 94 66.4

RNC-FCTN 39.18 0.975 651 841.7 36.20 0.960 663 850.0 29.91 0.888 669 889.9

Observed SNN TNN TTNN RTRC RC-FCTN RNC-FCTN Ground truth

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 7. Recovered results on two color videos with SR=0.2 and
SaP=0.1. The first row and third row are visual results at the 1st
frame of bunny and the 50th frame of elephants, respectively. The
second row and fourth row are the corresponding residual images.

superior in removing noise and preserving details than the compared ones, such as
grasses in the bunny and construction in the elephants.

5.4. Hyperspectral video completion. To verify the effectiveness of the pro-
posed methods, we conduct experiments on the hyperspectral video (HSV) 4 (height

4The data is available at http://openremotesensing.net/kb/data/.

http://openremotesensing.net/kb/data/
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Table 5. The MPSNR/MSSIM, iteration number, and CPU time
(seconds) of the recovered HSV by different methods for different
cases.

Methods
SaP=0.1, SR=0.3 SaP=0.1, SR=0.2 SaP=0.1, SR=0.1

MPSNR MSSIM Iter Time MPSNR MSSIM Iter Time MPSNR MSSIM Iter Time

Observed 9.367 0.071 - - 8.936 0.048 - - 8.545 0.026 - -

SNN 26.89 0.872 94 24.9 24.12 0.790 97 25.6 19.23 0.628 98 25.8

TNN 43.23 0.993 36 12.4 37.77 0.983 36 12.6 27.72 0.893 34 11.2

TTNN 45.71 0.995 89 28.7 43.18 0.993 94 30.7 36.68 0.985 94 29.2

RTRC 45.73 0.996 93 33.0 42.70 0.994 95 32.1 36.56 0.983 99 36.4

RC-FCTN 46.64 0.997 109 67.2 43.98 0.995 110 67.7 37.88 0.988 112 66.4

RNC-FCTN 46.91 0.997 436 162.2 44.38 0.995 443 159.0 39.20 0.986 446 159.9

Methods
SaP=0.2, SR=0.3 SaP=0.2, SR=0.2 SaP=0.2, SR=0.1

MPSNR MSSIM Iter Time MPSNR MSSIM Iter Time MPSNR MSSIM Iter Time

Observed 9.015 0.055 - - 8.716 0.038 - - 8.448 0.022 - -

SNN 24.24 0.759 89 23.1 21.32 0.722 94 24.8 17.00 0.527 98 25.1

TNN 39.75 0.987 36 12.4 34.37 0.969 36 12.2 25.14 0.821 34 11.0

TTNN 43.43 0.994 72 24.7 40.20 0.993 82 26.7 34.38 0.971 92 29.6

RTRC 42.62 0.994 83 30.6 39.09 0.991 87 31.7 33.65 0.972 96 35.8

RC-FCTN 43.79 0.996 110 68.7 39.62 0.991 112 69.9 34.49 0.974 112 67.1

RNC-FCTN 44.73 0.995 421 149.7 41.93 0.992 423 155.2 36.02 0.975 426 157.8

Observed SNN TNN TTNN RTRC RC-FCTN RNC-FCTN Ground truth

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 8. Recovered results on the HSV (band 8, 9, and 10 of first
frame are picked as red, green, and blue channels). The first row
and third row are visual results with SR=0.1, SaP=0.1 and 0.2,
respectively. The second row and fourth row are the corresponding
residual images.

× width × band × frames) of size 60× 60× 20× 20. HSV contains a wealth of in-
formation, thus we consider more challenging situations. We conduct RTC problem
for the HSV with different SRs {0.3, 0.2, 0.1} and SaP {0.1, 0.2}.
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Observed SNN TNN TT RTRC RC-FCTN RNC-FCTN Ground truth

Figure 9. The visual results of the 17th frame, the 27th frame,
the 37th frame, and the 47th frame of six robust competition meth-
ods.

We show the MPSNR/MSSIM values, iteration number, and CPU time obtained
by all compared restoration methods on the HSV in Table 5. The results indicates
that the proposed methods obtain an overall better performance than the compared
methods. As the SaP increases, the advantage of the proposed RNC-FCTN over
the compared methods is more prominent. Furthermore, Fig. 8 shows the visual
results and their corresponding residual images of the HSV with SR=0.1, SaP=
0.1 and 0.2, respectively. For visual effect, we have selected three bands to show
pseudo-color images. From Fig. 8, the SaP in the reconstructed results of SNN and
TNN is not removed well. The results reconstructed by the proposed methods are
closer to the real image in terms of color than those of compared methods. The
corresponding residual images can clearly confirm this phenomenon.

5.5. Video background subtraction. In this subsection, we apply the two pro-
posed methods to color video background subtraction. We pick up consecutive 50
frames of bootstrap 5 which forms a 120× 160× 3× 50 tensor. This video consists
of a static architectural background and moving foreground, such as moving peo-
ple. Since the background components of all frames are highly correlated, it can be
regarded as a low-rank tensor. The foreground components occupy a few locations
of the entire video, and it can be regarded as a sparse tensor.

We design a challenging task that executes a background subtraction from a
corrupted video with SR=0.4 and SaP=0.1. Fig. 9 presents the visual comparison
of the 17th frame, the 27th frame, the 37th frame, and the 47th frame of six robust
competition methods. As observed, the proposed methods, especially RNC-FCTN,
simultaneously extract background and preserve the global structure in completing
the missing entries. The reason is that the FCTN rank can be flexibly adjusted to
separate the low-rank background and sparse foreground well.

6. Conclusion. In this paper, we firstly proposed a robust nonconvex optimiza-
tion model RNC-FCTN for the RTC problem. Then, we theoretically derive the
convergence guarantee of the PAM-based algorithm. Moreover, we suggested an
FCTN nuclear norm as a convex surrogate of FCTN rank. Based on the FCTN

5The data is available https://www.microsoft.com/en-us/download/details.aspx?id=54651.

https://www.microsoft.com/en-us/download/details.aspx?id=54651
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nuclear norm, we propose a robust convex optimization model RC-FCTN for the
RTC problem. Then, we theoretically establish the exact recovery conditions that
one can recover a tensor of low-FCTN-rank exactly with overwhelming probability
provided that its rank is sufficiently small and its corrupted entries are reasonably
sparse. We develop an ADMM-based algorithm to solve the proposed RC-FCTN,
which enjoys the global convergence guarantee. Experimental results demonstrate
the usefulness of proposed methods with compared ones.
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Appendix A. Proof of Theorem 3.1. Here, we exhibit the detailed proof of
Theorem 3.1.

Proof. To prove it, we mainly demonstrate that the proposed RNC-FCTN satisfies
the following three conditions:

(1) f({F}1:N , X , E , Y) is a proper lower semi-continuous function.
(2) f({F}1:N , X , E , Y) satisfies the K- L property [3] at each {{F}t1:N , X t, Et, Yt}.
(3) The bounded sequence {{F}t1:N , X t, Et, Yt}t∈N satisfies the sufficient de-

crease and relative error conditions.
For convenience, we rewrite the objective function as

f({F}1:N , X , E , Y) = f1({F}1:N , X , E , Y) + f2(E) + Φ(Y). (60)

where f1({F}1:N , X , E , Y) =
1

2
‖X − FCTN({F}1:N )‖2F +

β

2
‖Y − X − E‖2F and

f2(E) = λ‖E‖1.
Thus, PAM-based algorithm is updated as the following iterative scheme:

F t+1
k = arg min

Fk

f({F}t+1
1:k−1, Fk, {F}

t
k+1:N , X t, Et, Yt) +

ρ

2
‖Fk −F tk‖2F ,

X t+1 = arg min
X

f({F}t+1
1:N , X , E

t, Yt) +
ρ

2
‖X − X t‖2F ,

Et+1 = arg min
E

f({F}t+1
1:N , X

t+1, E , Yt) +
ρ

2
‖E − Et‖2F ,

Yt+1 = arg min
Y

f({F}t+1
1:N , X

t+1, Et+1, Y) +
ρ

2
‖Y − Yt‖2F .

(61)
Now, we prove that the three key conditions are holded respectively.
Firstly, it is easy to verify that f1 is a C1 function with locally Lipschitz con-

tinuous gradient, and f2 and Φ(Y) are proper and lower semi-continuous functions.
Therefore, f({F}1:N , X , E , Y) is a proper lower semi-continuous function.

Secondly, since the semi-algebraic real-valued function satisfies the K- L property
[3], we only need to illustrate that f({F}1:N , X , E , Y) is a semi-algebraic function.
f1({F}1:N , X , E , Y), f2(E), and Φ(Y) are the sum of Frobenius norm, l1-norm, and
indicator function, respectively. It is easy to identity that they are semi-algebraic
functions [4]. As the sum of three semi-algebraic functions, f({F}1:N , X , E , Y)
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is still a semi-algebraic function. Therefore, f({F}1:N , X , E , Y) satisfies the K- L
property at each {{F}t1:N , X t, Et, Yt}.

Thirdly, we prove that the bounded sequence {{F}t1:N , X t, Et, Yt}t∈N satisfies
the sufficient decrease and relative error conditions, respectively.

Lemma 6.1. (Sufficient decrease) Suppose {{F}t1:N , X t, Et, Yt}t∈N be the
sequence obtained by Algorithm 1, then it satisfies

f({F}t+1
1:k , {F}

t
k+1:N , X

t, Et, Yt) +
ρ

2
‖Ft+1

k −Ft
k‖

2
F ≤ f({F}t+1

1:k−1, {F}
t
k:N , X

t, Et, Yt),

f({F}t+1
1:N , X

t+1, Et, Yt) +
ρ

2
‖X t+1 −X t‖2F ≤ f({F}t+1

1:N , X
t, Et, Yt),

f({F}t+1
1:N , X

t+1, Et+1, Yt) +
ρ

2
‖Et+1 − Et‖2F ≤ f({F}t+1

1:N , X
t+1, Et, Yt),

f({F}t+1
1:N , X

t+1, Et+1, Yt+1) +
ρ

2
‖Yt+1 − Yt‖2F ≤ f({F}t+1

1:N , X
t+1, Et+1, Yt).

(62)

We give the proof of Lemma 6.1. Let {F}t+1
1:N , X t+1, Et+1, and Yt+1 are the opti-

mal solutions of Fk-subproblem, X -subproblem, E-subproblem, and Y-subproblem,
we have

f({F}t+1
1:k , {F}

t
k+1:N , X

t, Et, Yt) +
ρ

2
‖Ft+1

k −Ft
k‖

2
F ≤ f({F}t+1

1:k−1, {F}
t
k:N , X

t, Et, Yt),

f({F}t+1
1:N , X

t+1, Et, Yt) +
ρ

2
‖X t+1 −X t‖2F ≤ f({F}t+1

1:N , X
t, Et, Yt),

f({F}t+1
1:N , X

t+1, Et+1, Yt) +
ρ

2
‖Et+1 − Et‖2F ≤ f({F}t+1

1:N , X
t+1, Et, Yt),

f({F}t+1
1:N , X

t+1, Et+1, Yt+1) +
ρ

2
‖Yt+1 − Yt‖2F ≤ f({F}t+1

1:N , X
t+1, Et+1, Yt).

(63)

Lemma 6.2. (Relative error) Suppose {{F}t1:N , X t, Et, Yt}t∈N be the sequence

obtained by Algorithm 1, then there exists U t+1
k ∈ 0 (k = 1, 2, · · · , N), Vt+1

1 ∈ 0,

Vt+1
2 ∈ ∂f2(Et+1), and Vt+1

3 ∈ ∂Φ(Yt+1), such that

‖Ut+1
k +∇Fk

f1({F}t+1
1:k , {F}

t
k+1:N , X

t, Et, Yt)‖F ≤ ρ‖Ft+1
k −Ft

k‖F , k = 1, 2, · · · , N,

‖Vt+1
1 +∇X f1({F}t+1

1:N , X
t+1, Et, Yt)‖F ≤ ρ‖X t+1 −X t‖F ,

‖Vt+1
2 +∇Ef1({F}t+1

1:N , X
t+1, Et+1, Yt)‖F ≤ ρ‖Et+1 − Et‖F ,

‖Vt+1
3 +∇Yf({F}t+1

1:N , X
t+1, Et+1, Yt+1)‖F ≤ ρ‖Yt+1 − Yt‖F .

(64)

To prove Lemma 6.2, we first show that the sequence is bounded. Since the initial
tensors {F}01:N , X 0, E0, and Y0 are apparently bounded, we prove that {F}t+1

1:N ,
X t+1, Et+1, and Yt+1 are bounded when {F}t1:N , X t, Et, and Yt are bounded.

(I) The sequence {{F}t1:N}t∈N are bounded: Supposing that ‖F tk‖F ≤ a and
‖X t‖F ≤ b, according to (14), we have

‖F t+1
1 ‖F ≤ (‖X t‖F ‖Mt

1‖F + ρ‖F t
1‖F )‖(Nt

1 + ρI)−1‖F

≤ (baN−1 + ρa)

√√√√ j∑
i=1

(1/(σi + ρ))2

≤ (baN−1 + ρa)
√
j/ρ,

(65)

where Nt
1 = (Mt

k)[m1:N−1;n1:N−1](M
t
k)[n1:N−1;m1:N−1] and σi is the eigenvalues of

Nt
1. It is clearly to see that F t+1

1 is bounded. Similarly, we can obtain that
F t+1

2 , F t+1
3 , · · · , F t+1

N are bounded.
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(II) The sequence {X t}t∈N is bounded: Supposing that ‖F t+1
k ‖F ≤ c, ‖Yt‖F ≤ d,

and ‖Et‖F ≤ e, according to (17)

‖X t+1‖F = ‖FCTN(F t+1
1 :N ) + β(Yt − E t) + ρX t‖F /(1 + β + ρ)

≤ (‖FCTN(F t+1
1 :N )‖F + β‖Yt‖F + β‖E t‖F + ρ‖X t‖F)/(1 + β + ρ)

≤ (cN + βd+ βe+ ρb)/(1 + β + ρ).

(66)

Thus, X t+1 is bounded.
(III) The sequence {Et}t∈N is bounded: Since X t+1, {F}t+1

1:N , Yt, and Et are

bounded, we suppose that ‖X t+1 −FCTN({F}t+1
1:N )‖F ≤ f, ‖Yt −X t+1 −Et‖F ≤ g,

and ‖Et‖1 ≤ h, according to (62), we have

f2(Et+1) = λ‖Et+1‖1 ≤ f({F}t+1
1:N , X

t+1, Et, Yt)

=
1

2
‖X t+1 − FCTN({F}t+1

1:N )‖2F +
β

2
‖Yt −X t+1 − Et‖2F + λ‖Et‖1 + Φ(Yt)

≤ 1

2
f2 +

β

2
g2 + λh.

(67)
Therefore, Et+1 is bounded.

(IV) The sequence {Yt}t∈N is bounded: Supposing that ‖X t+1‖F ≤ i and
‖Et+1‖F ≤ j, according to (21), we have

‖Yt+1‖F ≤ ‖(Yt+1/2)ΩC‖F + ‖YΩ‖F
≤ ‖β(X t+1 + Et+1) + ρYt‖F /(β + ρ) + ρ‖Yt‖F
≤ β(i+ j)/(β + ρ) + ρd/(β + ρ) + ρd.

(68)

Thus, Yt+1 is bounded.
In summary, the sequence {{F}t1:N , X t, Et, Yt}t∈N is bounded.

Let {F}t+1
1:N , X t+1, Et+1, and Yt+1 are the optimal solutions of Fk-subproblem,

X -subproblem, E-subproblem, and Y-subproblem, we have
0 ∈ ∇Fk

f1({F}t+1
1:k−1, Fk, {F}

t
k+1:N , X t, Et, Yt) + ρ(Fk −F tk),

0 ∈ ∇X f1({F}t+1
1:N , X , E

t, Yt) + ρ(X − X t),
0 ∈ ∇Ef1({F}t+1

1:N , X
t+1, E , Yt) + ∂f2(E) + ρ(E − Et),

0 ∈ ∇Yf1({F}t+1
1:N , X

t+1, Et+1, Y) + ∂Φ(Y) + ρ(Y − Yt).

(69)

Then, we define U t+1
k , Vt+1

1 , Vt+1
2 , and Vt+1

3 as
U t+1
k = −∇Fk

f1({F}t+1
1:k , {F}

t
k+1:N , X t, Et, Yt)− ρ(F t+1

k −F tk) ∈ 0,

Vt+1
1 = −∇X f1({F}t+1

1:N , X
t+1, Et, Yt)− ρ(X t+1 −X t) ∈ 0,

Vt+1
2 = −∇Ef1({F}t+1

1:N , X
t+1, Et+1, Yt)− ρ(Et+1 − Et) ∈ ∂f2(Et+1),

Vt+1
3 = −∇Yf1({F}t+1

1:N , X
t+1, Et+1, Yt+1)− ρ(Yt+1 − Yt) ∈ ∂Φ(Yt+1).

(70)

Since the sequence {{F}t1:N , X t, Et, Yt}t∈N is bounded, and ∇f1 is Lipschitz

continuous on any bounded set. Then there exists U t+1
k ∈ 0 (k = 1, 2, · · · , N),
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Vt+1
1 ∈ 0, Vt+1

2 ∈ ∂f2(Et+1), and Vt+1
3 ∈ ∂Φ(Yt+1), such that

‖U t+1
k +∇Fk

f1({F}t+1
1:k , {F}

t
k+1:N , X t, Et, Yt)‖F ≤ ρ‖F t+1

k −F tk‖F ,
‖Vt+1

1 +∇X f1({F}t+1
1:N , X

t+1, Et, Yt)‖F ≤ ρ‖X t+1 −X t‖F ,
‖Vt+1

2 +∇Ef1({F}t+1
1:N , X

t+1, Et+1, Yt)‖F ≤ ρ‖Et+1 − Et‖F ,
‖Vt+1

3 +∇Yf({F}t+1
1:N , X

t+1, Et+1, Yt+1)‖F ≤ ρ‖Yt+1 − Yt‖F .

(71)

Combining these conditions, the proposed algorithm conforms to Theorem 6.2 in
[1], the bounded sequence {{F}t1:N , X t, Et, Yt}t∈N converges to the critical point
of f({F}1:N , X , E , Y).

Appendix B. Proof of Theorem 4.3. Here, we exhibit the detailed proof of
Theorem 4.3.

Proof. We first recall the general convergence result of the ADMM [11]. Consider
the following two-block convex problems:

arg min
x,y

f(x) + g(y),

s.t. Ax + By = b, x ∈ X, y ∈ Y,
(72)

where f : Rm → R and g : Rn → R are closed proper convex functions, X ⊆ Rm
and Y ⊆ Rn are closed convex sets, A ∈ Rl×m and B ∈ Rl×n are matrices, and
b ∈ Rl is a given vector. The augmented Lagrangian function of (72) is

L(x,y, z) = f(x) + g(y) + 〈z,Ax + By− b〉+
β

2
‖Ax + By− b‖22, (73)

where z is the Lagrangian multiplier and β is a penalty parameter. The ADMM
algorithm iterates as

xt+1 = arg minx f(x) + 〈zt,Ax〉+
β

2
‖Ax + Byt − b‖22,

yt+1 = arg miny g(y) + 〈zt,By〉+
β

2
‖Axt+1 + By− b‖22

zt+1 = zt + τβ
(
Axt+1 + Byt+1 − b

)
,

where τ is the step length and the superscript t refers to the iteration index. The
following theorem establishes the convergence of ADMM.

Lemma 6.3. (Theorem B.1 in [11]) Assume that the solution set of (72) is nonempty
and there exists (x0,y0) ∈ ri(domf × domg) ∩ P , where P is the constraint set in

(72). Assume also that both ATA and BTB are positive definite. Let {(xt,yt, zt)}
be generated from the ADMM algorithm. If the step length τ ∈ (0, (1 +

√
5)/2),

then the sequence {(xt,yt)} converges to an optimal solution to (72) and {zt} con-
verges to an optimal solution to the dual problem of (72). Therefore, the sequence
{(xt,yt, zt)} generated from the ADMM algorithm is convergent.

Then we equivalently rewrite the proposed convex model which fits the form (72).
By introducing auxiliary variables Lk (k = 1, 2, · · · , N̄) and S, the optimization
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problem (25) can be rewritten as

min
X ,E

N̄∑
k=1

αk‖Lk[nk
1;nk

2]‖∗ + λ‖S‖1 + Φ(Y)

s.t. Y = X + E ,S = E ,Lk = X , k = 1, 2, · · · , N̄ ,

(74)

The linear constraints can be reformulated as the following matrix-vector multi-
plication form:

I I
0 I
I 0
...

...
I 0


(

x
e

)
+


0 0 0 · · · 0
−I 0 0 · · · 0
0 −I 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · −I




s
l1
l2
...
lN̄

 =


y
0
0
...
0

 , (75)

where I and 0 respectively denote the identify matrix and zero matrix, x, e, s,
{lk}N̄k=1, and y denote the vectorization of X , E , S, {Lk}N̄k=1, and Y, respectively.

We separate all the variables into two groups (X , E) and ({Lk}N̄k=1,S), and decom-
pose the objective function as f + g with f = Φ(X + E) (Φ(Y) = Φ(X + E)) and

g =
∑N̄
k=1 αk‖Lk[nk

1;nk
2]‖∗ + λ‖S‖1). Then the minimization problem (74) fits the

framework of ADMM (72).
Now, we examine the conditions in Lemma 6.3. The verification is divided into

three parts.
First, it is clear that the objective function of (74), denote by F (X , E ,Lk,S), is

a proper convex function.
Second, the P in our model is an affine space, thus there exists (x0,y0) ∈

ri(domf × domg) ∩ P .

Third, both ATA and BTB are positive definite, since A and B in (75) are
full column rank, where A and B denote the coefficient matrices of the variables
(xT , eT )T and (sT , lT1 , · · · , lTN̄ )T , respectively.

We set the step length τ = 1.1, then according to the Lemma 6.3, the sequence
{Ltk, St, X t, Et}t∈N obtained by ADMM is convergent.
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